Klasifikasi Kondisi Janin Menggunakan Algoritma K-Nearest Neighbors dan Teknik SMOTE Berdasarkan Data Kardiotogram


Authors

  • Dede Fadillah Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia
  • Elin Haerani Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia
  • Fitri Wulandari Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia
  • Fadhilah Syafria Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia

DOI:

https://doi.org/10.47065/bulletincsr.v5i4.585

Keywords:

Cardiotocography; K-Nearest Neighbors; SMOTE; Fetal Classification; Imbalanced Data

Abstract

Fetal health is a crucial aspect in reducing infant mortality rates, where cardiotocography (CTG) is used to monitor fetal condition through recordings of fetal heart rate and uterine contractions. However, manual interpretation of CTG data still faces challenges, particularly due to imbalanced class distribution. This study aims to develop a classification model for fetal conditions using the K-Nearest Neighbors (K-NN) algorithm combined with the Synthetic Minority Over-sampling Technique (SMOTE). The dataset used, sourced from Kaggle, consists of 2,126 CTG examinations categorized into three classes: Normal, Suspect, and Pathological. The data processing follows the Knowledge Discovery in Databases (KDD) process, including data selection, cleaning, normalization, splitting, balancing with SMOTE, and classification using K-NN. The model was evaluated using four training-testing split ratios (70:30, 80:20, 85:15, and 90:10) with accuracy and macro F1-score as metrics. The results indicate that the 85:15 split ratio achieved the highest accuracy of 89.7%, while the 90:10 ratio yielded the highest macro F1-score of 0.83. These findings suggest that the 85:15 ratio offers an optimal balance between model training and evaluation, whereas the highest F1-score at 90:10 reflects greater model sensitivity to minority classes. The combination of K-NN and SMOTE proved effective in addressing data imbalance and supports model stability in the overall classification process of fetal conditions.

Downloads

Download data is not yet available.

References

I. Sulihati, A. Syukur, and A. Marjuni, “Deteksi Kesehatan Janin Menggunakan Decision Tree dan Feature Forward Selection,” Build. Informatics, Technol. Sci., vol. 4, no. 3, pp. 1658–1664, 2022, doi: 10.47065/bits.v4i3.2672.

M. Minarti and R. Risnawati, “Posisi Ibu Hamil Memengaruhi Akurasi Pengukuran Kesejahteraan Janin,” J. Bidan Cerdas, vol. 2, no. 3, pp. 170–176, 2020, doi: 10.33860/jbc.v2i3.93.

Meti Patimah, “Pendidikan Kesehatan Ibu Hamil Tentang Ketidaknyamanan Pada Kehamilan Trimester I dan Penatalaksanaannya,” Din. J. Pengabdi. Kpd. Masy., vol. 4, no. 3, pp. 570–578, 2020, doi: 10.31849/dinamisia.v4i3.3790.

I. F. Nurahmadan, A. Agusta, P. A. Winarno, B. H. Sazali, Y. Thurfah, and A. Rosaliah, “Perbandingan Algoritma Machine Learning Untuk Klasifikasi Denyut Jantung Janin,” Semin. Nas. Mhs. Ilmu Komput. dan Apl., vol. 02, no. 1, pp. 733–740, 2021, [Online]. Available: https://conference.upnvj.ac.id/index.php/senamika/article/view/1411

I. Harun et al., “Mendorong Partisipasi Perempuan Dalam Perencanaan Ekonomi Pembangunan Kampung Takengon Barat Kec. Lut Tawar Encouraging,” J. Pengabdi. Pada Masy. Indones., vol. 2, no. 3, pp. 186–194, 2023, doi: 10.55606/jppmi.v2i3.603.

M. Mawaddah, A. Homaidi, and L. F. Lidimillah, “Implementation of the K-Nearest Neighbors Method for Determining Fetal Health Status Implementasi Metode K-Nearest Neighbors Untuk Penentuan,” J. Tek. Inform., vol. 5, no. 4, pp. 329–336, 2024, doi: 10.52436/1.jutif.2024.5.4.2173.

A. K. Wardhani et al., “Optimasi Nilai K Pada Algoritma K-Nearest,” J. Comput. Sci. Technol., vol. 5, no. 1, pp. 44–51, 2025, doi: 10.54840/jcstech.v5i1.360.

A. Kuzu and Y. Santur, “Early Diagnosis and Classification of Fetal Health Status from a Fetal Cardiotocography Dataset Using Ensemble Learning,” Diagnostics, vol. 13, no. 15, pp. 1–15, 2023, doi: 10.3390/diagnostics13152471.

A. Surya Firmansyah, A. Aziz, and M. Ahsan, “Optimasi K-Nearest Neighbor Menggunakan Algoritma Smote Untuk Mengatasi Imbalance Class Pada Klasifikasi Analisis Sentimen,” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 6, pp. 3341–3347, 2024, doi: 10.36040/jati.v7i6.7257.

R. T. Prasetio, “Seleksi Fitur dan Optimasi Parameter K-NN Berbasis Algoritma Genetika Pada Dataset Medis,” J. Responsif Ris. Sains dan Inform., vol. 2, no. 2, pp. 213–221, 2020, doi: 10.51977/jti.v2i2.319.

A. D. Monica and S. Sulastri, “Klasifikasi Hasil Cardiotocography (CTG) Ibu Hamil untuk Memprediksi Kesehatan Janin,” J. Teknol. Sist. Inf. dan Apl., vol. 6, no. 3, pp. 443–457, 2023, doi: 10.32493/jtsi.v6i3.31548.

S. E. Situmeang and N. P. Savina, “Analisis Perbandingan Metode Decision Tree , Random Forest , dan Support Vector Machine ( SVM ) dalam Memprediksi Kesehatan Janin,” Dep. Stat. Inst. Teknol. Sepuluh Nop., pp. 1–8, 2024, doi: 10.12962/j27213862.vxix.xxxx.

A. F. Riany and G. Testiana, “Penerapan Data Mining untuk Klasifikasi Penyakit Stroke Menggunakan Algoritma Naïve Bayes,” J. SAINTEKOM, vol. 13, no. 1, pp. 42–54, 2023, doi: 10.33020/saintekom.v13i1.352.

F. K. Nasser and S. F. Behadili, “A Review of Data Mining and Knowledge Discovery Approaches for Bioinformatics,” Iraqi J. Sci., vol. 63, no. 7, pp. 3169–3188, 2022, doi: 10.24996/ijs.2022.63.7.37.

N. Singhal and Himanshu, “A Review on Knowledge Discovery from Databases,” Lect. Notes Electr. Eng., vol. 860, no. January, pp. 457–464, 2022, doi: 10.1007/978-981-16-9488-2_43.

D. Papakyriakou and I. S. Barbounakis, “Data Mining Methods: A Review,” Int. J. Comput. Appl., vol. 183, no. 48, pp. 5–19, 2022, doi: 10.5120/ijca2022921884.

L. Cao and C. Zhang, “Domain driven data mining,” Data Min. Knowl. Discov. Technol., vol. 7, no. 4, pp. 196–223, 2008, doi: 10.4018/978-1-59904-960-1.ch009.

R. Kembang Hapsari and T. Surabaya, “Implementasi Algoritma SMOTE Sebagai Penyelesaian Imbalance Hight Dimensional Datasets,” Pros. Semin. Nas. Tek. Elektro, Sist. Informasi, dan Tek. Inform., pp. 427–427, 2022, doi: 10.31284/p.snestik.2022.2868.

E. Erlin, Y. Desnelita, N. Nasution, L. Suryati, and F. Zoromi, “Dampak SMOTE terhadap Kinerja Random Forest Classifier berdasarkan Data Tidak seimbang,” MATRIK J. Manajemen, Tek. Inform. dan Rekayasa Komput., vol. 21, no. 3, pp. 677–690, 2022, doi: 10.30812/matrik.v21i3.1726.

S. W. Binabar and Ivandari, “Optimasi Parameter K pada Algoritma KNN untuk Deteksi Penyakit Kanker Payudara,” IC-Tech, vol. XII, no. 2, pp. 11–18, 2017.

D. Abdullah, K. Asmi, and I. G. A. K. Warmayana, Perancangan dan Pembuatan Aplikasi File Server Berbasis Web Menggunakan Metode Interpolation Search. SEFA Bumi Persada, 2020.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Klasifikasi Kondisi Janin Menggunakan Algoritma K-Nearest Neighbors dan Teknik SMOTE Berdasarkan Data Kardiotogram

Dimensions Badge

ARTICLE HISTORY

Published: 2025-06-10

Abstract View: 22 times
PDF Download: 26 times

How to Cite

Dede Fadillah, Haerani, E., Wulandari, F. ., & Syafria, F. . (2025). Klasifikasi Kondisi Janin Menggunakan Algoritma K-Nearest Neighbors dan Teknik SMOTE Berdasarkan Data Kardiotogram. Bulletin of Computer Science Research, 5(4), 482-489. https://doi.org/10.47065/bulletincsr.v5i4.585

Issue

Section

Articles