Klasifikasi Kondisi Janin Berdasarkan Data Kardiotogram Menggunakan Algoritma Naive Bayes


Authors

  • Isruel Syah Utama Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia
  • Elin Haerani Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia
  • Fitri Wulandari Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia
  • Siti Ramadhani Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia

DOI:

https://doi.org/10.47065/bulletincsr.v5i4.584

Keywords:

Cardiotocography; Naïve Bayes; SMOTE; Fetal Classification; Imbalanced Data

Abstract

Fetal health during pregnancy is a crucial aspect that can be monitored through cardiotocography (CTG) data; however, manual interpretation of this data often encounters challenges due to class imbalance. This study aims to develop a fetal condition classification model using the Naive Bayes algorithm combined with the Synthetic Minority Over-sampling Technique (SMOTE) to address the disparity in class distribution. The CTG dataset, obtained from Kaggle, consists of 2,126 records categorized into three target classes: Normal, Suspect, and Pathological. Data processing followed the Knowledge Discovery in Databases (KDD) framework, including data selection, cleaning, normalization, splitting into four ratios (70:30, 80:20, 85:15, and 90:10), SMOTE application, and model evaluation using accuracy and F1-Macro metrics. The results showed that the 80:20 ratio yielded the highest accuracy at 79.81%, while the 90:10 ratio produced the highest F1-Macro score of 0.6788. These findings indicate that although accuracy remained relatively stable, the F1-Macro metric provided a better representation of performance across all classes, especially minority ones. The application of SMOTE proved effective in balancing class distribution and enhancing model sensitivity. This study serves as a foundational step in developing a more reliable and adaptive fetal condition classification system and highlights opportunities for further exploration of alternative algorithms and SMOTE parameter optimization.

Downloads

Download data is not yet available.

References

T. R. P. Lestari, “Achievement of Mother and Baby Health Status As One of the Successes of Mother and Child Health Programs,” Kajian, vol. 25, no. 1, pp. 75–89, 2020, doi: 10.22212/kajian.v25i1.1889.

Sutrani Syarif, “Pemanfaatan Teknologi Tentang Menghitung Denyut Jantung Janin Di Desa Tanakaraeng Kabupaten Gowa,” J. Pelayanan dan Pengabdi. Masy. Indones., vol. 2, no. 2, pp. 204–208, 2023, doi: 10.55606/jppmi.v1i2.617.

Y. A. Aji et al., “Sistem Pengukuran Detak Jantung Janin Melalui Elektrokardiogram Abdominal dan Android,” Indones. J. Appl. Phys., vol. 12, no. 2, p. 279, 2022, doi: 10.13057/ijap.v12i2.65287.

E. Wati, S. A. Sari, and N. L. Fitri, “Penerapan Pendidikan Kesehatan tentang Tanda Bahaya Kehamilan untuk Meningkatkan Pengetahuan Ibu Hamil Primigravida Di Wilayah Kerja UPTD Puskesmas Purwosari Kec. Metro Utara,” J. Cendikia Muda, vol. 3, no. 2, pp. 226–234, 2023.

S. Gholampour, “Impact of Nature of Medical Data on Machine and Deep Learning for Imbalanced Datasets: Clinical Validity of SMOTE Is Questionable,” Mach. Learn. Knowl. Extr., vol. 6, no. 2, pp. 827–841, 2024, doi: 10.3390/make6020039.

F. Francis, S. Luz, H. Wu, S. J. Stock, and R. Townsend, “Machine learning on cardiotocography data to classify fetal outcomes: A scoping review,” Comput. Biol. Med., vol. 172, no. February, p. 108220, 2024, doi: 10.1016/j.compbiomed.2024.108220.

Y. Salini, S. N. Mohanty, J. V. N. Ramesh, M. Yang, and M. M. V. Chalapathi, “Cardiotocography Data Analysis for Fetal Health Classification Using Machine Learning Models,” IEEE Access, vol. 12, no. February, pp. 26005–26022, 2024, doi: 10.1109/ACCESS.2024.3364755.

I. Nazli, E. Korbeko, S. Dogru, E. Kugu, and O. K. Sahingoz, “Early Detection of Fetal Health Conditions Using Machine Learning for Classifying Imbalanced Cardiotocographic Data,” Diagnostics, vol. 15, no. 10, pp. 1–26, 2025, doi: 10.3390/diagnostics15101250.

A. Kuzu and Y. Santur, “Early Diagnosis and Classification of Fetal Health Status from a Fetal Cardiotocography Dataset Using Ensemble Learning,” Diagnostics, vol. 13, no. 15, pp. 1–15, 2023, doi: 10.3390/diagnostics13152471.

S. Wang, Y. Dai, J. Shen, and J. Xuan, “Research on expansion and classification of imbalanced data based on SMOTE algorithm,” Sci. Rep., vol. 11, no. 1, pp. 1–11, 2021, doi: 10.1038/s41598-021-03430-5.

N. Sharfina and N. G. Ramadhan, “Analisis SMOTE Pada Klasifikasi Hepatitis C Berbasis Random Forest dan Naïve Bayes,” JOINTECS (Journal Inf. Technol. Comput. Sci., vol. 8, no. 1, p. 33, 2023, doi: 10.31328/jointecs.v8i1.4456.

S. M. Habib, E. Haerani, S. K. Gusti, and S. Ramadhani, “Klasifikasi Berita Menggunakan Metode Naïve Bayes Classifier,” J. Nas. Komputasi dan Teknol. Inf., vol. 5, no. 2, pp. 248–258, 2022, doi: 10.32672/jnkti.v5i2.4191.

N. Singhal and Himanshu, “A Review on Knowledge Discovery from Databases,” Lect. Notes Electr. Eng., vol. 860, no. January, pp. 457–464, 2022, doi: 10.1007/978-981-16-9488-2_43.

A. G. Shaaban, M. H. Khafagy, M. A. Elmasry, H. El-Beih, and M. H. Ibrahim, “Knowledge discovery in manufacturing datasets using data mining techniques to improve business performance,” Indones. J. Electr. Eng. Comput. Sci., vol. 26, no. 3, pp. 1736–1746, 2022, doi: 10.11591/ijeecs.v26.i3.pp1736-1746.

S. Bhatia and J. Malhotra, “Naïve bayes classifier for predicting the novel coronavirus,” Proc. 3rd Int. Conf. Intell. Commun. Technol. Virtual Mob. Networks, ICICV 2021, no. Icicv, pp. 880–883, 2021, doi: 10.1109/ICICV50876.2021.9388410.

V. No, Z. Amri, M. Rodi, M. N. Wathani, A. Bagja, “Infotek?: Jurnal Informatika dan Teknologi Prediksi Diabetes Menggunakan Algoritma K-Nearest ( KNN ) Teknik SMOTE-ENN,” J. Inform. dan Teknol., vol. 8, no. 1, pp. 193–204, 2025, doi: 10.29408/jit.v8i1.27975 e-ISSN.

F. K. Nasser and S. F. Behadili, “A Review of Data Mining and Knowledge Discovery Approaches for Bioinformatics,” Iraqi J. Sci., vol. 63, no. 7, pp. 3169–3188, 2022, doi: 10.24996/ijs.2022.63.7.37.

R. Kembang Hapsari and T. Surabaya, “Implementasi Algoritma SMOTE Sebagai Penyelesaian Imbalance Hight Dimensional Datasets,” Pros. Semin. Nas. Tek. Elektro, Sist. Informasi, dan Tek. Inform., pp. 427–427, 2022, doi: 10.31284/p.snestik.2022.2868.

E. Erlin, Y. Desnelita, N. Nasution, L. Suryati, and F. Zoromi, “Dampak SMOTE terhadap Kinerja Random Forest Classifier berdasarkan Data Tidak seimbang,” MATRIK J. Manajemen, Tek. Inform. dan Rekayasa Komput., vol. 21, no. 3, pp. 677–690, 2022, doi: 10.30812/matrik.v21i3.1726.

A. Ilham et al., “CFCM-SMOTE: A Robust Fetal Health Classification to Improve Precision Modeling in Multiclass Scenarios,” Int. J. Comput. Digit. Syst., vol. 16, no. 1, pp. 471–486, 2024, doi: 10.12785/ijcds/160137.

Heliyanti Susana, “Penerapan Model Klasifikasi Metode Naive Bayes Terhadap Penggunaan Akses Internet,” J. Ris. Sist. Inf. dan Teknol. Inf., vol. 4, no. 1, pp. 1–8, 2022, doi: 10.52005/jursistekni.v4i1.96.

M. V. Anand, B. Kiranbala, S. R. Srividhya, K. C., M. Younus, and M. H. Rahman, “Gaussian Naïve Bayes Algorithm: A Reliable Technique Involved in the Assortment of the Segregation in Cancer,” Mob. Inf. Syst., vol. 2022, p. 7, 2022, doi: 10.1155/2022/2436946.

D. Abdullah, K. Asmi, and I. G. A. K. Warmayana, Perancangan dan Pembuatan Aplikasi File Server Berbasis Web Menggunakan Metode Interpolation Search. SEFA Bumi Persada, 2020.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Klasifikasi Kondisi Janin Berdasarkan Data Kardiotogram Menggunakan Algoritma Naive Bayes

Dimensions Badge

ARTICLE HISTORY

Published: 2025-06-10

Abstract View: 14 times
PDF Download: 12 times

How to Cite

Syah Utama, I., Haerani, E., Wulandari, F., & Ramadhani, S. (2025). Klasifikasi Kondisi Janin Berdasarkan Data Kardiotogram Menggunakan Algoritma Naive Bayes. Bulletin of Computer Science Research, 5(4), 473-481. https://doi.org/10.47065/bulletincsr.v5i4.584

Issue

Section

Articles