Perbandingan Akurasi Arsitektur EfficientNet-B0, VGG16, dan Inception V3 Dalam Deteksi Tumor Ginjal Pada Citra CT-Scan
DOI:
https://doi.org/10.47065/bulletincsr.v5i4.670Keywords:
EfficientNet-B0; Inception-V3; VGG16; Kidney Tumor; CT-ScanAbstract
Kidney dysfunction can trigger the development of various diseases, including kidney tumors. Early detection of kidney tumors is very important to increase the effectiveness of treatment and the chances of patient recovery. The use of deep learning technology in medical image classification has become a promising approach, especially in detecting abnormalities in the kidney organ through CT-Scan images. This study compares the performance of three Convolutional Neural Network (CNN) architectures, namely EfficientNet-B0, Inception-V3, and VGG16, in detecting kidney tumors. The dataset used was obtained from the kaggle website, namely CT-scan images with normal and tumor classes and divided by a ratio of training data and test data of 80:20. The hyperparameter used is Stochastic Gradient Descent (SGD) with a learning rate of 0.001 and 0.0001. The evaluation was carried out using a confusion matrix with metrics of accuracy, precision, recall, and F1-score . According to the test outcomes, the VGG16 model configured with a 0.001 learning rate achieved the highest classification performance, recording 99.46% accuracy, precision, recall, and F1-score.
Downloads
References
N. Syuryani, E. Arman, and G. E. Putri, “Perbedaan Kadar Ureum Sebelum Dan Sesudah Hemodialisa Pada Penderita Gagal Ginjal Kronik,” Jurnal Kesehatan Saintika Meditory, vol. 4, no. 2, p. 117, Nov. 2021, doi: 10.30633/jsm.v4i2.1292.
A. S. Lestari and H. Harun, “Pemeriksaan Penunjang Dalam Mendiagnosis Tumor Ginjal,” Jurnal Medical Profession (Medpro), vol. 1, no. 2, pp. 112–117, 2019.
M. Gharaibeh et al., “Radiology Imaging Scans for Early Diagnosis of Kidney Tumors: A Review of Data Analytics-Based Machine learning and Deep learning Approaches,” Big Data and Cognitive Computing, vol. 6, no. 1, Mar. 2022, doi: 10.3390/bdcc6010029.
D. Alzu’Bi et al., “Kidney Tumor Detection and Classification Based on Deep learning Approaches: A New Dataset in CT Scans,” J Healthc Eng, vol. 2022, 2022, doi: 10.1155/2022/3861161.
F. Yanto, N. Jannata, L. Handayani, and E. P. Cynthia, “Pengaruh Contrast Limited Adaptive Histogram Equlization dalam Klasifikasi CT-Scan Tumor Ginjal menggunakan Deep Learning,” INOVTEK Polbeng - Seri Informatika, vol. 9, no. 1, Jun. 2024, doi: 10.35314/isi.v9i1.4235.
F. Yanto, M. I. Hatta, I. Afrianty, and L. Afriyanti, “Pengaruh Image Enhancement Contrast Stretching dalam Klasifikasi CT-Scan Tumor Ginjal menggunakan Deep Learning,” INOVTEK Polbeng - Seri Informatika, vol. 9, no. 1, Jun. 2024, doi: 10.35314/isi.v9i1.4233.
J. Kers et al., “Deep learning-based classification of kidney transplant pathology: a retrospective, multicentre, proof-of-concept study,” Lancet Digit Health, vol. 4, no. 1, pp. e18–e26, Jan. 2022, doi: 10.1016/S2589-7500(21)00211-9.
W. R. Perdani, R. Magdalena, and N. K. Caecar Pratiwi, “Deep learning untuk Klasifikasi Glaukoma dengan menggunakan Arsitektur EfficientNet,” ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika, vol. 10, no. 2, p. 322, Apr. 2022, doi: 10.26760/elkomika.v10i2.322.
N. A. Sundari, R. Magladena, and S. Saidah, “Klasifikasi Jenis Kulit Wajah Menggunakan Metode Covolutional Neural Network (CNN) Efficientnet-B0 Skin Classification System Using Convolutional Neural Network (CNN) EfficientNet-B0,” E-Proceeding of Engineering, vol. 8, no. 0, p. 6, 2022.
A. N. Fajrina, Z. H. Pradana, S. I. Purnama, and S. Romadhona, “Penerapan Arsitektur EfficientNet-B0 Pada Klasifikasi Leukimia Tipe Acute Lymphoblastik Leukimia,” Jurnal Riset Rekayasa Elektro, vol. 6, no. 1, p. 59, Jun. 2024, doi: 10.30595/jrre.v6i1.22090.
E. Reihardian, “Klasifikasi Ekspresi Wajah Manusia Menggunakan Metode CNN Dengan Arsitektur Visual Geometry Group (VGG-Net),” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 8, no. 8, Aug. 2024, [Online]. Available: https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/14081
H. D. Hekmatyar, W. A. Saputra, and C. Ramdani, “Klasifikasi Pneumonia Dengan Deep Learning Faster Region Convolutional Neural Network Arsitektur VGG16 dan ResNet50,” InComTech?: Jurnal Telekomunikasi dan Komputer, vol. 12, no. 3, p. 186, Dec. 2022, doi: 10.22441/incomtech.v12i3.15112.
S. Y. Prasetyo, “SARS-CoV-2 Detection from Lung CT-Scan Images Using Fine Tuning Concept on Deep-CNN Pretrained Model,” CESS (Journal of Computer Engineering, System and Science), vol. 8, no. 1, p. 101, Jan. 2023, doi: 10.24114/cess.v8i1.40897.
I. Idawati, D. P. Rini, A. Primanita, and T. Saputra, “Klasifikasi Kanker Payudara Menggunakan Metode Convolutional Neural Network (CNN) dengan Arsitektur VGG-16,” Jurnal Sistem Komputer dan Informatika (JSON), vol. 5, no. 3, p. 529, Apr. 2024, doi: 10.30865/json.v5i3.7553.
Rizki Firdaus Mulya, Ema Utami, and Dhani Ariatmanto, “Classification of Acute Lymphoblastic Leukemia based on White Blood Cell Images using InceptionV3 Model,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 7, no. 4, pp. 947–952, Aug. 2023, doi: 10.29207/resti.v7i4.5182.
M. A. Amrullah and M. I. Irawan, “Implementasi Jaringan Saraf Konvolusional dengan Inception-V3 untuk Deteksi Katarak Menggunakan Gambar Digital Funduskopi,” Jurnal Sains dan Seni ITS, vol. 12, no. 1, May 2023, doi: 10.12962/j23373520.v12i1.106807.
A. Nurdin, D. S. Yudha Kartika, and A. R. Efrat Najaf, “Klasifikasi Penyakit Daun Tomat Dengan Metode Convolutional Neural Network Menggunakan Arsitektur Inception-V3,” JURNAL ILMIAH INFORMATIKA, vol. 12, no. 02, pp. 114–119, Sep. 2024, doi: 10.33884/jif.v12i02.9162.
N. W. Wulansari and M. Muslih, “Implementasi Metode Convolutional Neural Network Untuk Deteksi Kematangan Buah Pisang Menggunakan Inception V3,” JOINS (Journal of Information System), vol. 8, no. 2, pp. 147–155, Nov. 2023, doi: 10.33633/joins.v8i2.9074.
A. Salam, F. Yanto, S. Agustian, and S. Ramadhani, “Perbandingan Klasifikasi Citra CT-Scan Kanker Paru-Paru Menggunakan Contrast Stretching Pada CNN dengan EfficientNet-B0,” Media Online, vol. 4, no. 3, pp. 1341–1351, 2023, doi: 10.30865/klik.v4i3.1448.
D. Abdillah Salafy, F. Yanto, S. Agustian, and F. Insani, “Perbandingan Klasifikasi Citra CT-Scan Kanker Paru-Paru Menggunakan Image Enhancement CLAHE Pada EfficientNet-B0,” Media Online, vol. 4, no. 3, pp. 1651–1659, 2023, doi: 10.30865/klik.v4i3.1514.
A. Elmaddah, “ct_kidney,” Kaggle. Accessed: Jun. 20, 2025. [Online]. Available: https://www.kaggle.com/code/abdelrahmanelmaddah/ct-kidney
Z.-P. Jiang, Y.-Y. Liu, Z.-E. Shao, and K.-W. Huang, “An Improved VGG16 Model for Pneumonia Image Classification,” Applied Sciences, vol. 11, no. 23, p. 11185, Nov. 2021, doi: 10.3390/app112311185.
M. A. S. Al Husaini, M. H. Habaebi, T. S. Gunawan, M. R. Islam, E. A. A. Elsheikh, and F. M. Suliman, “Thermal-based early breast cancer detection using inception V3, inception V4 and modified inception MV4,” Neural Comput Appl, vol. 34, no. 1, pp. 333–348, Jan. 2022, doi: 10.1007/s00521-021-06372-1.
S. Abd El-Ghany, M. A. Mahmood, and A. A. Abd El-Aziz, “Adaptive Dynamic Learning Rate Optimization Technique for Colorectal Cancer Diagnosis Based on Histopathological Image Using EfficientNet-B0 Deep Learning Model,” Electronics (Basel), vol. 13, no. 16, p. 3126, Aug. 2024, doi: 10.3390/electronics13163126.
B. Vrigazova, “The Proportion for Splitting Data into Training and Test Set for the Bootstrap in Classification Problems,” Business Systems Research, vol. 12, no. 1, pp. 228–242, May 2021, doi: 10.2478/bsrj-2021-0015.
N. F. Fahrudin, K. R. Putra, S. Umaroh, And G. B. Lautan, “Influence of Data Scaling and Train/Test Split Ratios on LightGBM Efficacy for Obesity Rate Prediction,” MIND Journal, vol. 9, no. 2, pp. 220–234, Dec. 2024, doi: 10.26760/mindjournal.v9i2.220-234.
H. Almirza, S. Sanjaya, L. Handayani, and F. Syafria, “Klasifikasi Daging Sapi dan Daging Babi Menggunakan Convolutional Neural Network EfficientNet-B0 dengan Augmentasi Citra,” Media Online), vol. 3, no. 6, pp. 1013–1021, 2023, doi: 10.30865/klik.v3i6.910.
Rismiyati and Luthfiarta Ardytha, “VGG16 Transfer Learning Architecture for Salak Fruit Quality Classification,” Jurnal Informatika dan Teknologi Informasi, vol. 18, no. 1, pp. 37–48, 2021, doi: 10.31515/telematika.v18i1.4025.
F. Masruroh, B. Surarso, and B. Warsito, “Perbandingan Kinerja Inception- Resnetv2, Xception, Inception-v3, dan Resnet50 pada Gambar Bentuk Wajah,” Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 10, no. 1, pp. 11–20, Feb. 2023, doi: 10.25126/jtiik.2023104941.
A. W. Setiawan, “Perbandingan Arsitektur Convolutional Neural Network Pada Klasifikasi Pneumonia, COVID-19, Lung Opacity, dan Normal Menggunakan Citra Sinar-X Thoraks,” Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 9, no. 7, pp. 1563–1570, Dec. 2022, doi: 10.25126/jtiik.2022976742.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Perbandingan Akurasi Arsitektur EfficientNet-B0, VGG16, dan Inception V3 Dalam Deteksi Tumor Ginjal Pada Citra CT-Scan
ARTICLE HISTORY
How to Cite
Issue
Section
Copyright (c) 2025 Muhammad Fahri, Febi Yanto, Fadhilah Syafria, Rahmad Abdillah

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).