Penerapan Information Gain Untuk Seleksi Fitur Pada Klasifikasi Jenis Kelamin Tulang Tengkorak Menggunakan Backpropagation


Authors

  • Nada Tsawaabul Khair Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia
  • Iis Afrianty Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia
  • Fadhilah Syafria Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia
  • Elvia Budianita Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia
  • Siska Kurnia Gusti Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia

DOI:

https://doi.org/10.47065/bulletincsr.v5i4.637

Keywords:

Backpropagation Neural Network; Feature Selection; Information Gain; Sex Classification; Skull

Abstract

Forensic anthropology and skull analysis play a crucial role in the biological identification of individuals, including sex determination. This study aims to improve the accuracy of gender classification based on skull structure by combining the Information Gain feature selection method with the Backpropagation algorithm. The dataset used is the craniometric data compiled by William W. Howells, consisting of 2,524 samples with 85 measurement features. The preprocessing stage includes data selection, data cleaning, and normalization. Feature selection was conducted using the Information Gain method with three threshold values: 0.01, 0.05, and 0.1, resulting in 79, 46, and 38 selected features, respectively. The model was evaluated using the K-Fold Cross Validation method with K=10 and K=20. The highest accuracy of 93.91% was achieved at the 0.01 threshold using the Backpropagation architecture [79:119:1], a learning rate of 0.01, and K=20. These results demonstrate that feature selection using Information Gain enhances the performance of the Backpropagation model by eliminating irrelevant features and minimizing the risk of overfitting.

Downloads

Download data is not yet available.

References

A. M. Christensen, N. V. Passalacqua, and E. J. Bartelink, “Introduction to forensic anthropology,” Forensic Anthropol., pp. 1–31, 2019, doi: 10.1016/B978-0-12-815734-3.00001-4.

Arthy, R. Goel, and M. Sreenivas, “Determination of sex by osteometry of third metatarsal,” Indian J. Forensic Med. Toxicol., vol. 14, no. 3, pp. 1–6, 2020, doi: 10.37506/ijfmt.v14i3.10315.

E. Nikita and P. Nikitas, “On the use of machine learning algorithms in forensic anthropology,” Leg. Med., vol. 47, Nov. 2020, doi: 10.1016/J.LEGALMED.2020.101771.

Y. Harni, I. Afrianty, S. Sanjaya, R. Abdillah, F. Yanto, and F. Syafria, “Performance Analysis of LVQ 1 Using Feature Selection Gain Ratio for Sex Classification in Forensic Anthropology,” Build. Informatics, Technol. Sci., vol. 5, no. 1, pp. 211?218-211?218, Jun. 2023, doi: 10.47065/BITS.V5I1.3625.

I. Afrianty, D. Nasien, and H. Haron, “Performance Analysis of Support Vector Machine in Sex Classification of The Sacrum Bone in Forensic Anthropology,” J. Tek. Inform., vol. 15, no. 1, pp. 63–72, Jun. 2022, doi: 10.15408/JTI.V15I1.25254.

D. H. Ubelaker and H. Khosrowshahi, “Estimation of Age in Forensic Anthropology: Historical Perspective and Recent Methodological Advances,” Forensic Sci. Res., vol. 4, no. 1, pp. 1–9, Jan. 2019, doi: 10.1080/20961790.2018.1549711.

N. L. Hairuddin, L. M. Yusuf, and M. S. Othman, “Gender Classification On Skeletal Remains: Efficiency Of Metaheuristic Algorithm Method And Optimized Back Propagation Neural Network,” J. Inf. Commun. Technol., vol. 19, no. 2, pp. 251–277, Mar. 2020, doi: 10.32890/JICT2020.19.2.5.

Haeril, Sulaeman, and M. Akbar Syafruddin, “Profil indeks massa tubuh atlet cabang bela diri Komite Olahraga Nasional Indonesia Kota Makassar,” J. Sport Sci., vol. 12, no. 2, pp. 90–98, 2022, doi: 10.17977/um057v12i2p90-98.

N. Techataweewan, J. T. Hefner, L. Freas, N. Surachotmongkhon, R. Benchawattananon, and N. Tayles, “Metric sexual dimorphism of the skull in Thailand,” Forensic Sci. Int. Reports, vol. 4, Nov. 2021, doi: 10.1016/J.FSIR.2021.100236.

S. Braun, A. F. Ridel, E. N. L’Abbé, C. E. Theye, and A. C. Oettlé, “Repeatability of a morphoscopic sex estimation technique for the mental eminence on micro-focus X-ray computed tomography models,” Forensic Imaging, vol. 28, p. 200500, Mar. 2022, doi: 10.1016/J.FRI.2022.200500.

D. H. Toneva, S. Y. Nikolova, G. P. Agre, D. K. Zlatareva, V. G. Hadjidekov, and N. E. Lazarov, “Data mining for sex estimation based on cranial measurements,” Forensic Sci. Int., vol. 315, Oct. 2020, doi: 10.1016/j.forsciint.2020.110441.

J. Tetteh, A. K. Appiah, C. S. Abaidoo, and C. Adjei-Antwi, “The forensic use of percutaneous femur length in height and sex estimation among Ghanaians,” Forensic Sci. Int. Reports, vol. 4, p. 100234, Nov. 2021, doi: 10.1016/J.FSIR.2021.100234.

M. K. Misiani, T. Amuti, S. Darbar, P. Mandela, E. Maranga, and M. Obimbo, “Sex determination from dimensions of distal tibiae in adult Kenyans: A discriminant function analysis,” Transl. Res. Anat., vol. 20, p. 100075, Sep. 2020, doi: 10.1016/J.TRIA.2020.100075.

D. Toneva, S. Nikolova, G. Agre, D. Zlatareva, V. Hadjidekov, and N. Lazarov, “Machine learning approaches for sex estimation using cranial measurements,” Int. J. Legal Med., vol. 135, no. 3, pp. 951–966, May 2021, doi: 10.1007/S00414-020-02460-4,.

S. Sri Rahayu et al., “Klasifikasi Tulang Tengkorak Berdasarkan Jenis Kelamin dalam Antropologi Forensik Menggunakan Metode Support Vector Machine,” INOVTEK Polbeng - Seri Inform., vol. 9, no. 1, p. 2024, Jun. 2024, doi: 10.35314/ISI.V9I1.4046.

F. Curate, “The Estimation of Sex of Human Skeletal Remains in the Portuguese Identified Collections: History and Prospects,” Forensic Sci., vol. 2, no. 1, pp. 272–286, Mar. 2022, doi: 10.3390/FORENSICSCI2010021.

W. Yang, M. Zhou, P. Zhang, G. Geng, X. Liu, and H. Zhang, “Skull Sex Estimation Based on Wavelet Transform and Fourier Transform,” Biomed Res. Int., vol. 2020, 2020, doi: 10.1155/2020/8608209,.

Darmila, “Evaluasi Perbandingan Performansi Lvq 1, Lvq 2, Dan Lvq 3 Dalam Klasifikasi Jenis Kelamin Menggunakan Tulang Tengkorak,” J. instek (informatika sains dan Teknol., vol. 7, pp. 344–353, 2022, [Online]. Available: http://journal.uin-alauddin.ac.id/index.php/instek/index

M. Kadarman, I. Afrianty, E. Budianita, and F. Syafria, “Klasifikasi Tulang Tengkorak Manusia Berdasarkan Jenis Kelamin Menggunakan Backpropagation Pada Antropologi Forensik,” J. CoSciTech (Computer Sci. Inf. Technol., vol. 5, no. 3, pp. 619–625, Dec. 2024, doi: 10.37859/COSCITECH.V5I3.8235.

A. Herdiansah, R. I. Borman, D. Nurnaningsih, A. A. J. Sinlae, and R. R. Al Hakim, “Klasifikasi Citra Daun Herbal Dengan Menggunakan Backpropagation Neural Networks Berdasarkan Ekstraksi Ciri Bentuk,” JURIKOM (Jurnal Ris. Komputer), vol. 9, no. 2, p. 388, Apr. 2022, doi: 10.30865/JURIKOM.V9I2.4066.

A. Gunawan, S. Thamrin, Y. D. Kuntjoro, and A. M. Idris, “Backpropagation Neural Network (BPNN) Algorithm for Predicting Wind Speed Patterns in East Nusa Tenggara,” Trends Renew. Energy, vol. 8, no. 2, pp. 107–118, Apr. 2022, doi: 10.17737/TRE.2022.8.2.00143.

D. S. Al-Azzawi, “Application and evaluation of the neural network in gearbox,” TELKOMNIKA (Telecommunication Comput. Electron. Control., vol. 18, no. 1, pp. 19–29, Feb. 2020, doi: 10.12928/TELKOMNIKA.V18I1.13760.

F. N. Fajriyan, M. Ahsan, and W. Harianto, “Komparasi Tingkat Akurasi Information Gain Dan Gain Ratio Pada Metode K-Nearest Neighbor,” JATI (Jurnal Mhs. Tek. Inform., vol. 6, no. 1, pp. 386–391, Apr. 2022, doi: 10.36040/JATI.V6I1.4694.

D. Setiawan, A. Nugraha, and A. Luthfiarta, “Komparasi Teknik Feature Selection Dalam Klasifikasi Serangan IoT Menggunakan Algoritma Decision Tree,” J. Media Inform. Budidarma, vol. 8, no. 1, p. 83, 2024, doi: 10.30865/mib.v8i1.6987.

T. Azhima Yoga Siswa and W. Joko Pranoto, “Implementasi Seleksi Fitur Information Gain Ratio Pada Algoritma Random Forest Untuk Model Data Klasifikasi Pembayaran Kuliah,” Din. Inform. J. Ilm. Teknol. Inf., vol. 15, pp. 41–49, 2023, doi: 10.35315/INFORMATIKA.V15I1.9465.

S. N. Salsabila, B. N. Sari, and R. Mayasari, “Klasifikasi Ulasan Pengguna Aplikasi Discord Menggunakan Metode Information Gain Dan Naïve Bayes Classifier,” INFOTECH J., vol. 9, no. 2, pp. 383–392, Jul. 2023, doi: 10.31949/INFOTECH.V9I2.6277.

I. K. Hasan, R. Resmawan, and J. Ibrahim, “Perbandingan K-Nearest Neighbor dan Random Forest dengan Seleksi Fitur Information Gain untuk Klasifikasi Lama Studi Mahasiswa,” Indones. J. Appl. Stat., vol. 5, no. 1, pp. 58–66, May 2022, doi: 10.13057/IJAS.V5I1.58056.

R. A. Azizah, F. A. Bachtiar, and S. Adinugroho, “Klasifikasi Kinerja Akademik Siswa Menggunakan Neighbor Weighted K-Nearest Neighbor Dengan Seleksi Fitur Information Gain,” J. Teknol. Inf. dan Ilmu Komput., vol. 9, no. 3, pp. 605–614, 2022, doi: 10.25126/jtiik.202295751.

P. a Bagaskara, N. Y. Setiawan, and A. R. . . Perdanakusuma, “Analisis dan Perbaikan Proses Bisnis dengan Menggunakan Metode Business Process Improvement (BPI) Pada PT. Andynni Chitta Sejahtera,” … Teknol. Inf. dan …, vol. 3, no. 8, pp. 7635–7641, 2019, [Online]. Available: http://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/5928

H. Azis, P. Purnawansyah, F. Fattah, and I. P. Putri, “Performa Klasifikasi K-NN dan Cross Validation Pada Data Pasien Pengidap Penyakit Jantung,” Ilk. J. Ilm., vol. 12, no. 2, pp. 81–86, 2020, doi: 10.33096/ilkom.v12i2.507.81-86.

W. Wijiyanto, A. I. Pradana, S. Sopingi, and V. Atina, “Teknik K-Fold Cross Validation untuk Mengevaluasi Kinerja Mahasiswa,” J. Algoritm., vol. 21, no. 1, pp. 239–248, 2024, doi: 10.33364/algoritma/v.21-1.1618.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Penerapan Information Gain Untuk Seleksi Fitur Pada Klasifikasi Jenis Kelamin Tulang Tengkorak Menggunakan Backpropagation

Dimensions Badge

ARTICLE HISTORY

Published: 2025-06-30

Abstract View: 82 times
PDF Download: 53 times

How to Cite

Khair, N. T. ., Afrianty, I., Syafria, F. ., Budianita, E. ., & Gusti, S. K. . (2025). Penerapan Information Gain Untuk Seleksi Fitur Pada Klasifikasi Jenis Kelamin Tulang Tengkorak Menggunakan Backpropagation. Bulletin of Computer Science Research, 5(4), 666-678. https://doi.org/10.47065/bulletincsr.v5i4.637

Issue

Section

Articles