Klasifikasi Teks Komentar Pengguna Aplikasi Access By Kai di Google Play Store Menggunakan Metode Naïve Bayes
DOI:
https://doi.org/10.47065/bulletincsr.v5i4.575Keywords:
Access by KAI; Google Play Store; K-Means; Naïve Bayes; Text ClassificationAbstract
The advancement of information technology has influenced various aspects of life, including transportation. The Access by KAI application provides digital train ticket booking services. With millions of users, analyzing the level of satisfaction through reviews on the Google Play Store is important to improve service quality. This study aims to classify user reviews using the Naïve Bayes algorithm to determine the level of satisfaction, group reviews based on certain categories, and evaluate the accuracy of the classification results. The study uses the Naive Bayes method to classify text where review data collection is carried out first through a scraping process from the Google Play Store with a total of 1000 reviews. Data is analyzed through pre-processing stages such as cleaning, case folding, tokenization, normalization, stopwords, steamming and sentiment labeling using InSetLexicon. Furthermore, reviews are grouped by category using the K-Means clustering method to group data into three categories, namely Features, Services, and Systems, to improve classification accuracy followed by classification using Naïve Bayes. Evaluation is carried out using a confusion matrix to measure accuracy, precision, recall, and F1-score. The classification results show that in the Feature category, precision is 79%, recall 99%, and F1-score 88%. In the Service category, precision reaches 100%, recall 56%, and F1-score 72%. For the System category, precision is 94%, recall 68%, and F1-score 79%. Overall, the model achieves an accuracy of 83%. The benefits of this study are to provide a deep understanding of user needs and become a reference for developers to improve the Access by KAI application service.
Downloads
References
V. R. Modompit, “Analisis Permintaan Transportasi Gojek Online Di Kota Manado,” J. Berk. Ilm. Efisiensi, vol. 20, no. 03, pp. 140–151, 2020.
Eskiyaturrofikoh and R. R. Suryono, “Analisis Sentimen Aplikasi X Pada Google Play Store Menggunakan Algoritma Naïve Bayes Dan Support Vector Machine (SVM),” Jurnal Ilmiah Penelitian dan Pembelajaran Informatika (JIPI), vol. 8, no. 3, pp. 110–118, 2019, doi: 10.29100/jipi.v9i3.5392
Anwar Pauji, S. Aisyah, A. Surip, R. Saputra, and I. Ali, “Implementasi Algoritma K-Nearest Neighbor Dalam Menentukan Penerima Bantuan Langsung Tunai,” KOPERTIP J. Ilm. Manaj. Inform. dan Komput., vol. 4, no. 1, pp. 21–27, 2022, doi: 10.32485/kopertip.v4i1.114.
A. Surahman, U. Hayati, B. Sosial, and R. Miner, “Implementasi Algoritma Naïve Bayes,” JATI (Jurnal Mahasiswa Teknik Informatika), vol. 7, no. 1, pp. 347–352, 2023, doi: 10.36040/jati.v7i1.6302
N. Riyanah and F. Fatmawati, “Penerapan Algoritma Naive Bayes Untuk Klasifikasi Penerima Bantuan Surat Keterangan Tidak Mampu,” JTIM J. Teknol. Inf. dan Multimed., vol. 2, no. 4, pp. 206–213, 2021, doi: 10.35746/jtim.v2i4.117.
R. Adyatma Subagja, Y. Widiastiwi, and N. Chamidah, “Klasifikasi Ulasan Aplikasi Jenius pada Google Play Store Menggunakan Algoritma Naive Bayes,” Inform. J. Ilmu Komput., vol. 17, no. 3, p. 197, 2021, doi: 10.52958/iftk.v17i3.3652.
N. Nurzaman, N. Suarna, and W. Prihartono, “Analisis Sentimen Ulasan Aplikasi Threads Di Google Playstore Menggunakan Algoritma Naïve Bayes,” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 1, pp. 967–974, 2024, doi: 10.36040/jati.v8i1.8708.
P. Utomo, N. Asvio, and F. Prayogi, “Metode Penelitian Tindakan Kelas (PTK): Panduan Praktis untuk Guru dan Mahasiswa di Institusi Pendidikan,” Pubmedia J. Penelit. Tindakan Kelas Indones., vol. 1, no. 4, p. 19, 2024, doi: 10.47134/ptk.v1i4.821.
M. I. A. Ranius, T. Sutabri, and A. Y. Ranius, “Analisis Manajemen Pelayanan PT. KAI Sebagai Pengguna pada Aplikasi KAI ACCESS Berbasis Teknologi Informasi Menggunakan Framework ITIL Version 3,” Indones. J. Multidiscip. Soc. Technol., vol. 1, no. 2, pp. 135–140, 2023, doi: 10.31004/ijmst.v1i2.136.
S. D. Pratama and E. Syaodih, “Analisis Perilaku Konsumen dalam Memanfaatkan Aplikasi KAI Access,” Serv. Manag. Triangle J. …, vol. 3, no. 1, pp. 20–27, 2021.
M. P. R. Putra and K. R. N. Wardani, “Penerapan Text Mining Dalam Menganalisis Kepribadian Pengguna Media Sosial,” JUTIM (Jurnal Tek. Inform. Musirawas), vol. 5, no. 1, pp. 63–71, 2020, doi: 10.32767/jutim.v5i1.791.
M. Sholih ’afif, M. Muzakir, M. I. Al, and G. Al Awalaien, “Text Mining Untuk Mengklasifikasi Judul Berita Online Studi Kasus Radar Banjarmasin Menggunakan Metode Naïve Bayes,” Kumpul. J. Ilmu Komput., vol. 08, no. 2, pp. 199–208, 2021.
M. Ikhsan and R. R. Kurniawan, “Penerapan Text Mining pada Sistem Rekomendasi Pembimbing Skripsi Mahasiswa Menggunakan Algoritma Naïve Bayes Classifier,” Indones. J. Comput. Sci. Attrib., vol. 12, no. 6, pp. 2023–4196, 2023.
L. Efrizoni, S. Defit, M. Tajuddin, and A. Anggrawan, “Komparasi Ekstraksi Fitur dalam Klasifikasi Teks Multilabel Menggunakan Algoritma Machine Learning,” MATRIK J. Manajemen, Tek. Inform. dan Rekayasa Komput., vol. 21, no. 3, pp. 653–666, 2022, doi: 10.30812/matrik.v21i3.1851.
N. W. Utami and I. G. J. Eka Putra, “Text Minig Clustering Untuk Pengelompokan Topik Dokumen Penelitian Menggunakan Algoritma K-Means Dengan Cosine Similarity,” J. Inform. Teknol. dan Sains, vol. 4, no. 3, pp. 255–259, 2022, doi: 10.51401/jinteks.v4i3.1907.
A. Z. Amrullah, A. Sofyan Anas, and M. A. J. Hidayat, “Analisis Sentimen Movie Review Menggunakan Naive Bayes Classifier Dengan Seleksi Fitur Chi Square,” Jurnal Bumigora, vol. 2, no. 1, pp. 40–44, 2020, doi: 10.30812/bite.v2i1.804.
M. H. Mahendra, D. T. Murdiansyah, and K. M. Lhaksmana, “Analisis Sentimen Tweet COVID-19 menggunakan K-Nearest Neighbors dengan TF-IDF dan Ekstraksi Fitur CountVectorizer,” DIKE J. Ilmu Multidisiplin, vol. 1, no. 2, pp. 37–43, 2023, doi: 10.69688/dike.v1i2.35.
D. F. Zhafira, B. Rahayudi, and I. Indriati, “Analisis Sentimen Kebijakan Kampus Merdeka Menggunakan Naive Bayes dan Pembobotan TF-IDF Berdasarkan Komentar pada Youtube,” J. Sist. Informasi, Teknol. Informasi, dan Edukasi Sist. Inf., vol. 2, no. 1, pp. 55–63, 2021, doi: 10.25126/justsi.v2i1.24.
N. M. A. Mahar, Vihi Atina, and Nugroho Arif Sudibyo, “Pemodelan Prediksi Kelulusan Mahasiswa Dengan Metode Naïve Bayes Di Uniba,” J. Manaj. Inform. dan Sist. Inf., vol. 6, no. 2, pp. 148–158, 2023, doi: 10.36595/misi.v6i2.875.
L. Mayasari and D. Indarti, “Klasifikasi Topik Tweet Mengenai Covid Menggunakan Metode Multinomial Naïve Bayes Dengan Pembobotan Tf-Idf,” J. Ilm. Inform. Komput., vol. 27, no. 1, pp. 43–53, 2022, doi: 10.35760/ik.2022.v27i1.6184.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Klasifikasi Teks Komentar Pengguna Aplikasi Access By Kai di Google Play Store Menggunakan Metode Naïve Bayes
ARTICLE HISTORY
How to Cite
Issue
Section
Copyright (c) 2025 Fahrul Afandi, Rakhmat Kurniawan

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).