Analisis Sentimen Berita Online Terhadap Transportasi Online di Indonesia dengan Metode Naïve Bayes Classifier, Support Vector Machine dan K-Nearest Neighbor
DOI:
https://doi.org/10.47065/bulletincsr.v5i2.477Keywords:
Online news; Sentiment Analyst; Text Mining; Classification AccuracyAbstract
News about online transportation in Indonesia in 2019 until early 2020 has been published in various Indonesian online media, because there is enough information in the form of text without numerical scale, it is difficult to classify information information efficiently without reading the full text. Sentiment analysis is used to automate the process of assessing opinion whether it is positive or negative. Classifying sentiments on news from online news media with the Text Mining process and using the method of increasing the Classification Accuracy / Ensemble Method of Engineering by combining the classification algorithm naïve bayes method, classifier Supporting vector machines and k-nearest neighbors added with the Particle Swarm Optimization method and Vote method The next will be a comparative analysis. The results of the study above get an SVM exam accuracy value even after using the PSO selection feature with the ensemble. Select is still appropriate at 84.16%, Likewise for NB algorithm which gets 79.08% and KNN which gets approval 87.19%. These words will be used to see words related to sentiments that often appear and have the highest weight and can be used to find out positive news articles and negative news articles. And for this research the model that uses KNN algorithm gets the highest accuracy.
Downloads
References
M. S. I. Lubis, “TEKNOLOGI INFORMASI DAN KOMUNIKASI DALAM PERSPEKTIF ISLAM,” in Prosiding, 2021, pp. 79–88.
N. H. Elvi Rahmi, Eva Yumami, “Analisis Metode Pengembangan Sistem Informasi Berbasis Website?: Systematic Literature Review,” Remik Ris. dan E-Jurnal Manaj. Inform. Komput., vol. 7, pp. 821–834, 2023.
Mukhsin, “PERANAN TEKNOLOGI INFORMASI DAN KOMUNIKASI DALAM PUBLIKASI INFORMASI DESA DI ERA GLOBALISASI,” TEKNOKOM, vol. 3, no. 1, pp. 7–15, 2020.
M. A. K. Rizki1 and A. F. OP2, “RANCANG BANGUN APLIKASI E-CUTI PEGAWAI BERBASIS WEBSITE ( STUDI KASUS?: PENGADILAN TATA USAHA NEGARA ),” J. Teknol. dan Sist. Informaasi, vol. 2, no. 3, pp. 1–13, 2021.
I. Riana, Y. Sinambela, M. Surip, and S. F. Dalimunthe, “Analisis Wacana Kritis pada Berita Online Crazy Rich Indonesia,” J. Pendidik. Tambusai, vol. 6, no. November 2021, pp. 9421–9429, 2022.
N. S. Marga, A. R. Isnain, and D. Alita, “SENTIMEN ANALISIS TENTANG KEBIJAKAN PEMERINTAH TERHADAP KASUS CORONA MENGGUNAKAN METODE NAIVE BAYES,” J. Inform. dan Rekayasa Perangkat Lunak, vol. 2, no. 4, pp. 453–463, 2020.
B. Kurniawan et al., “SENTIMEN ANALISIS TERHADAP KEBIJAKAN PENYELENGGARA SISTEM ELEKTRONIK ( PSE ) MENGGUNAKAN ALGORITMA BIDIRECTIONAL ENCODER REPRESENTATIONS FROM TRANSFORMERS ( BERT ),” J. Teknol. dan Sist. Informaasi, vol. 3, no. 4, pp. 98–106, 2022.
A. P. Giovani, T. Haryanti, and L. Kurniawati, “ANALISIS SENTIMEN APLIKASI RUANG GURU DI TWITTER MENGGUNAKAN ALGORITMA KLASIFIKASI,” J. Teknoinfo, vol. 14, no. 2, pp. 116–124, 2020.
A. Hendra and Fitriyani, “Analisis Sentimen Review Halodoc Menggunakan Nai ? ve Bayes Classifier,” JISKa, vol. 6, no. 2, pp. 78–89, 2021.
Irvandi, B. Irawan, and O. Nurdiawan, “NAIVE BAYES DAN WORDCLOUD UNTUK ANALISIS SENTIMEN WISATA HALAL PULAU LOMBOK,” INFOTECH, vol. 9, no. 1, pp. 236–242, 2023.
A. R. Isnain, A. I. Sakti, D. Alita, and N. S. Marga, “SENTIMEN ANALISIS PUBLIK TERHADAP KEBIJAKAN LOCKDOWN PEMERINTAH JAKARTA MENGGUNAKANALGORITMA SVM,” JDMSI, vol. 2, no. 1, pp. 31–37, 2021.
Surohman, S. Aji, Rousyanti, and F. F. Wati, “Analisa Sentimen Terhadap Review Fintech Dengan Metode Naive Bayes,” J. Sains dan Manaj., vol. 8, no. 1, pp. 93–105, 2020.
M. I. Ahmadi, D. Gustian, and F. Sembiring, “Analisis Sentiment Masyarakat terhadap Kasus Covid-19 pada Media Sosial Youtube dengan Metode Naive bayes,” J. Sains Komput. Inform., vol. 5, no. September, pp. 807–814, 2021.
J. W. Iskandar and Y. Nataliani, “Perbandingan Naive Bayes, SVM, dan K-NN Untuk Analisis Sentimen Gadget Berbasis Aspek,” vol. 5, no. 158, pp. 1120–1126.
Y. A. Singgalen, “Analisis Perilaku Wisatawan Berdasarkan Data Ulasan di Website Tripadvisor Menggunakan CRISP-DM?: Wisata Minat Khusus Pendakian Gunung Rinjani dan Gunung Bromo,” J. Comput. Syst. Informatics, vol. 4, no. 2, pp. 326–338, 2023, doi: 10.47065/josyc.v4i2.3042.
M. R. Nahjan, N. Heryana, and A. Voutama, “IMPLEMENTASI RAPIDMINER DENGAN METODE CLUSTERING K-MEANS UNTUK ANALISA PENJUALAN PADA TOKO OJ CELL,” J. Mhs. Tek. Inform., vol. 7, no. 1, pp. 101–104, 2023.
Ainurrohmah, “Akurasi Algoritma Klasifikasi pada Software Rapidminer dan Weka,” PRISMA, vol. 4, pp. 493–499, 2021.
D. Pascalina, R. Widhiastono, and C. Juliane, “Pengukuran Kesiapan Transformasi Digital Smart City Menggunakan Aplikasi Rapid Miner,” Technomedia Journaql, vol. 7, no. 3, pp. 293–302, 2023.
D. Darwis, N. Siskawati, and Z. Abidin, “Penerapan Algoritma Naive Bayes untuk Analisis Sentimen Review Data Twitter BMKG Nasional,” Jurnaal Tekno Kompak, vol. 15, no. 1, pp. 131–145, 2021.
N. Hendrastuty, A. R. Isnain, and A. Y. Rahmadhani, “Analisis Sentimen Masyarakat Terhadap Program Kartu Prakerja Pada Twitter Dengan Metode Support Vector Machine,” J. Pengemb. IT, vol. 6, no. 3, pp. 150–155, 2021.
M. S. Alrajak, I. Ernawati, and I. Nurlaili, “ANALISIS SENTIMEN TERHADAP PELAYANAN PT PLN DI JAKARTA PADA TWITTER DENGAN ALGORITMA K- NEAREST,” Semin. Nas. Mhs. Ilmu Komput. dan Apl., pp. 110–122, 2020.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Analisis Sentimen Berita Online Terhadap Transportasi Online di Indonesia dengan Metode Naïve Bayes Classifier, Support Vector Machine dan K-Nearest Neighbor
ARTICLE HISTORY
How to Cite
Issue
Section
Copyright (c) 2025 Arina Selawati, Yan Rianto, Rachmawati Darma Astuti, Ainun Zumarniansyah, Deny Novianti

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).