Implementasi Algoritma C4.5 Untuk Deteksi Dini Penyakit Diabetes Mellitus Pada Manusia
DOI:
https://doi.org/10.47065/bulletincsr.v4i2.337Keywords:
Prediction System; Diabetes Mellitus; Decision Tree; C4.5Abstract
Diabetes is classified as one of the fastest growing life-threatening chronic diseases which has affected 422 million people worldwide according to the World Health Organization (WHO) report, in 2018. Therefore, it is very important to carry out early detection of DM disease because if the disease If left for too long without treatment, it can result in dangerous complications such as kidney failure, damage to the function of other organs to heart attacks. In this research an information system will be built by applying the C4.5 data mining algorithm for early detection of Diabetes Mellitus in humans. The dataset in this study was taken from the Kaggle Diabetes Dataset. The results of the study show that the information system built can assist the medical world in early detection of Diabetes Mellitus in humans through a predictive feature that implements the C4.5 algorithm. In addition, the results of testing the C4.5 algorithm show that the algorithm is classified as accurate in predicting early detection of Diabetes Mellitus if it follows the decision tree rules that are formed.
Downloads
References
A. Viloria, Y. Herazo-Beltran, D. Cabrera, and O. B. Pineda, “Diabetes Diagnostic Prediction Using Vector Support Machines,” in Procedia Computer Science, Elsevier B.V., 2020, pp. 376–381. doi: 10.1016/j.procs.2020.03.065.
W. Apriliah, I. Kurniawan, M. Baydhowi, and T. Haryati, “Prediksi Kemungkinan Diabetes pada Tahap Awal Menggunakan Algoritma Klasifikasi Random Forest,” SISTEMASI, vol. 10, no. 1, p. 163, Jan. 2021, doi: 10.32520/stmsi.v10i1.1129.
Y. Nora Marlim, L. Suryati, and N. Agustina, “Deteksi Dini Penyakit Diabetes Menggunakan Machine Learning dengan Algoritma Logistic Regression,” 2022.
I. W. Karmana, “Penerapan Pola Hidup Sehat untuk Mencegah Diabetes Mellitus,” Panthera?: Jurnal Ilmiah Pendidikan Sains dan Terapan, vol. 3, no. 1, pp. 1–6, Jan. 2023, doi: 10.36312/pjipst.v3i1.141.
W. Yusnaeni, “Penerapan Algoritma C4.5 Dalam Prediksi Resiko Diabetes Tahap Awal (Early Stage Diabetes),” Jurnal Teknik Komputer AMIK BSI, vol. III, no. 1, pp. 56–60, 2022, doi: 10.31294/jtk.v4i2.
M. Dewi, Y. Yellyanda, and D. Ulfa, “Edukasi Penatalaksanaan Diabetes terhadap Manajemen Perawatan Diri Pasien Diabetes Mellitus Tipe II,” Jurnal Keperawatan Silampari, vol. 5, no. 2, pp. 981–990, Apr. 2022, doi: 10.31539/jks.v5i2.3583.
N. Sunanto and G. Falah, “PENERAPAN ALGORITMA C4.5 UNTUK MEMBUAT MODEL PREDIKSI PASIEN YANG MENGIDAP PENYAKIT DIABETES,” Rabit?: Jurnal Teknologi dan Sistem Informasi Univrab, vol. 7, no. 2, pp. 208–216, Jul. 2022, doi: 10.36341/rabit.v7i2.2435.
I. Made, S. Ramayu, F. Susanto, and G. S. Mahendra, “PENERAPAN DATA MINING DENGAN ALGORITMA C4.5 DALAM PEMESANAN OBAT GUNA MENINGKATKAN KEUNTUNGAN APOTEK,” 2022. [Online]. Available: http://senada.idbbali.ac.id
A. Novriandy, “Implementasi Algoritma Naive Bayes dan Algoritma C4.5 dalam Klasifikasi Kelayakan Bantuan UMKM,” Media Online), vol. 4, no. 1, pp. 208–217, 2023, doi: 10.30865/klik.v4i1.1099.
A. Sepharni, I. E. Hendrawan, C. Rozikin, and S. Karawang, “ANALISIS DATA HASIL DIAGNOSA UNTUK KLASIFIKASI GANGGUAN KEPRIBADIAN MENGGUNAKAN ALGORITMA C4.5,” 2021. [Online]. Available: https://www.kaggle.com/fedesoriano/heart-
K. L. Kohsasih and Z. Situmorang, “Analisis Perbandingan Algoritma C4.5 dan Naïve Bayes Dalam Memprediksi Penyakit Cerebrovascular,” Jurnal Informatika, vol. 9, no. 1, pp. 13–17, Apr. 2022, doi: 10.31294/inf.v9i1.11931.
D. Gifu, “The use of decision trees for analysis of the epilepsy,” in Procedia Computer Science, Elsevier B.V., 2021, pp. 2844–2853. doi: 10.1016/j.procs.2021.09.055.
V. A. Zulaiha, N. Rahaningsih, O. Nurdiawan, and A. Rinaldi Dikananda, “Implementasi Algoritma C.45 dalam Klasifikasi Bahan Baku,” vol. 3, no. 1, pp. 41–45, 2022.
A. Purwanto, M. Asbari, and T. I. Santoso, “Analisis Data Penelitian Marketing: Perbandingan Hasil,” Journal of Industrial Engineering & Management Research, vol. 2, no. 4, doi: 10.7777/jiemar.
I. Putu et al., “REKOMENDASI PENGAMBILAN MATA KULIAH PILIHAN UNTUK MAHASISWA SISTEM INFORMASI MENGGUNAKAN ALGORITME DECISION TREE,” vol. 6, no. 3, 2019, doi: 10.25126/jtiik.2019.6892.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Implementasi Algoritma C4.5 Untuk Deteksi Dini Penyakit Diabetes Mellitus Pada Manusia
ARTICLE HISTORY
How to Cite
Issue
Section
Copyright (c) 2024 Chandra, David, Hendri

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).