Implementasi Algoritma C4.5 Untuk Deteksi Dini Penyakit Diabetes Mellitus Pada Manusia


Authors

  • Chandra STMIK Time, Medan, Indonesia
  • David STMIK Time, Medan, Indonesia
  • Hendri STMIK Time, Medan, Indonesia

DOI:

https://doi.org/10.47065/bulletincsr.v4i2.337

Keywords:

Prediction System; Diabetes Mellitus; Decision Tree; C4.5

Abstract

Diabetes is classified as one of the fastest growing life-threatening chronic diseases which has affected 422 million people worldwide according to the World Health Organization (WHO) report, in 2018. Therefore, it is very important to carry out early detection of DM disease because if the disease If left for too long without treatment, it can result in dangerous complications such as kidney failure, damage to the function of other organs to heart attacks. In this research an information system will be built by applying the C4.5 data mining algorithm for early detection of Diabetes Mellitus in humans. The dataset in this study was taken from the Kaggle Diabetes Dataset. The results of the study show that the information system built can assist the medical world in early detection of Diabetes Mellitus in humans through a predictive feature that implements the C4.5 algorithm. In addition, the results of testing the C4.5 algorithm show that the algorithm is classified as accurate in predicting early detection of Diabetes Mellitus if it follows the decision tree rules that are formed.

Downloads

Download data is not yet available.

References

A. Viloria, Y. Herazo-Beltran, D. Cabrera, and O. B. Pineda, “Diabetes Diagnostic Prediction Using Vector Support Machines,” in Procedia Computer Science, Elsevier B.V., 2020, pp. 376–381. doi: 10.1016/j.procs.2020.03.065.

W. Apriliah, I. Kurniawan, M. Baydhowi, and T. Haryati, “Prediksi Kemungkinan Diabetes pada Tahap Awal Menggunakan Algoritma Klasifikasi Random Forest,” SISTEMASI, vol. 10, no. 1, p. 163, Jan. 2021, doi: 10.32520/stmsi.v10i1.1129.

Y. Nora Marlim, L. Suryati, and N. Agustina, “Deteksi Dini Penyakit Diabetes Menggunakan Machine Learning dengan Algoritma Logistic Regression,” 2022.

I. W. Karmana, “Penerapan Pola Hidup Sehat untuk Mencegah Diabetes Mellitus,” Panthera?: Jurnal Ilmiah Pendidikan Sains dan Terapan, vol. 3, no. 1, pp. 1–6, Jan. 2023, doi: 10.36312/pjipst.v3i1.141.

W. Yusnaeni, “Penerapan Algoritma C4.5 Dalam Prediksi Resiko Diabetes Tahap Awal (Early Stage Diabetes),” Jurnal Teknik Komputer AMIK BSI, vol. III, no. 1, pp. 56–60, 2022, doi: 10.31294/jtk.v4i2.

M. Dewi, Y. Yellyanda, and D. Ulfa, “Edukasi Penatalaksanaan Diabetes terhadap Manajemen Perawatan Diri Pasien Diabetes Mellitus Tipe II,” Jurnal Keperawatan Silampari, vol. 5, no. 2, pp. 981–990, Apr. 2022, doi: 10.31539/jks.v5i2.3583.

N. Sunanto and G. Falah, “PENERAPAN ALGORITMA C4.5 UNTUK MEMBUAT MODEL PREDIKSI PASIEN YANG MENGIDAP PENYAKIT DIABETES,” Rabit?: Jurnal Teknologi dan Sistem Informasi Univrab, vol. 7, no. 2, pp. 208–216, Jul. 2022, doi: 10.36341/rabit.v7i2.2435.

I. Made, S. Ramayu, F. Susanto, and G. S. Mahendra, “PENERAPAN DATA MINING DENGAN ALGORITMA C4.5 DALAM PEMESANAN OBAT GUNA MENINGKATKAN KEUNTUNGAN APOTEK,” 2022. [Online]. Available: http://senada.idbbali.ac.id

A. Novriandy, “Implementasi Algoritma Naive Bayes dan Algoritma C4.5 dalam Klasifikasi Kelayakan Bantuan UMKM,” Media Online), vol. 4, no. 1, pp. 208–217, 2023, doi: 10.30865/klik.v4i1.1099.

A. Sepharni, I. E. Hendrawan, C. Rozikin, and S. Karawang, “ANALISIS DATA HASIL DIAGNOSA UNTUK KLASIFIKASI GANGGUAN KEPRIBADIAN MENGGUNAKAN ALGORITMA C4.5,” 2021. [Online]. Available: https://www.kaggle.com/fedesoriano/heart-

K. L. Kohsasih and Z. Situmorang, “Analisis Perbandingan Algoritma C4.5 dan Naïve Bayes Dalam Memprediksi Penyakit Cerebrovascular,” Jurnal Informatika, vol. 9, no. 1, pp. 13–17, Apr. 2022, doi: 10.31294/inf.v9i1.11931.

D. Gifu, “The use of decision trees for analysis of the epilepsy,” in Procedia Computer Science, Elsevier B.V., 2021, pp. 2844–2853. doi: 10.1016/j.procs.2021.09.055.

V. A. Zulaiha, N. Rahaningsih, O. Nurdiawan, and A. Rinaldi Dikananda, “Implementasi Algoritma C.45 dalam Klasifikasi Bahan Baku,” vol. 3, no. 1, pp. 41–45, 2022.

A. Purwanto, M. Asbari, and T. I. Santoso, “Analisis Data Penelitian Marketing: Perbandingan Hasil,” Journal of Industrial Engineering & Management Research, vol. 2, no. 4, doi: 10.7777/jiemar.

I. Putu et al., “REKOMENDASI PENGAMBILAN MATA KULIAH PILIHAN UNTUK MAHASISWA SISTEM INFORMASI MENGGUNAKAN ALGORITME DECISION TREE,” vol. 6, no. 3, 2019, doi: 10.25126/jtiik.2019.6892.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Implementasi Algoritma C4.5 Untuk Deteksi Dini Penyakit Diabetes Mellitus Pada Manusia

Dimensions Badge

ARTICLE HISTORY

Published: 2024-02-26

Abstract View: 74 times
PDF Download: 35 times

How to Cite

Chandra, David, & Hendri. (2024). Implementasi Algoritma C4.5 Untuk Deteksi Dini Penyakit Diabetes Mellitus Pada Manusia. Bulletin of Computer Science Research, 4(2), 241-248. https://doi.org/10.47065/bulletincsr.v4i2.337

Issue

Section

Articles