Klasifikasi Pencari Kerja pada Disnaker Menggunakan Metode K-Means Clustering
DOI:
https://doi.org/10.47065/bulletincsr.v4i2.334Keywords:
K-Means; Clustering; Rapid Miner; Worker; ClassificationAbstract
The Manpower Office (Disnaker) is a government institution tasked with supporting, controlling, and supervising the employment sector. In addition, the Manpower Office is also responsible for providing specialized skills training to prospective employees to the needs of the job market and providing broad access to employment opportunities. This research aims to cluster job seeker data based on education level in the Medan area using the K-Means Algorithm through a clustering method approach with the application of Data Mining Techniques using RapidMiner software to obtain accurate and relevant data. The results of the implementation of the K-Means Algorithm on job seeker data in the Medan area show the formation of 6 groups (k6) with a Davies Bouldin Index (DBI) value of 0.185. This study shows that the use of cluster (k6) as the optimal k provides the best DBI value, which is 0.185, indicating the level of similarity of data in each group is getting closer.
Downloads
References
Aditya, A., Jovian, I., & Sari, B. N. "Implementasi K-Means Clustering Ujian Nasional Sekolah Menengah Pertama di Indonesia Tahun 2018/2019". Jurnal Media Informatika Budidarma, 4(1), 51, 2020, https://doi.org/10.30865/mib.v4i1.1784
Harahap, T. R., & Nawawi, Z. M. "Pelayanan Permasalahan Dan Penempatan Tenaga Kerja Pada Dinas Tenaga Kerja (Disnaker) Kota Medan. Balance Jurnal Akuntansi Dan …", 1(1), 96–109, 2022 https://jurnal.risetilmiah.ac.id/index.php/jam/article/view/2%0Ahttps://jurnal.risetilmiah.ac.id/index.php/ja m/article/download/2/2
Ningsih, W., & Abdullah, F. "Analisis Perbedaan Pencari Kerja dan Lowongan Kerja Sebelum dan Pada Saat Pandemi Covid-19 di Kota Malang". Journal of Regional Economics Indonesia, 2(1), 42–56, 2021, https://doi.org/10.26905/jrei.v2i1.6181.
Nurcahyo, N. "Perlindungan hukum tenaga kerja berdasarkan peraturan perundang-undangan di Indonesia". Jurnal Cakrawala Hukum, 12(1), 69–78, 2021, https://doi.org/10.26905/idjch.v12i1.5781
Pa, P., Pardede, A. M. H., & Rahmadani, S. "Pengelompakan Data Pencari Kerja Terdaftar Berdasarkan Umur Dan Pendidikan Menggunakan Metode K-means Clustering Di Dinas Tenaga Kerja dan Perindustrian Perdagangan Kota Binjai". Jurnal Informatika Kaputama (JIK), 6(3), 2022.
Utami, farathika putri. "Pengaruh Indeks Pembangunan Manusia (IPM), Kemiskinan dan Pengangguran Terhadap Pertumbuhan Ekonomi di Provinsi Aceh". Jurnal Samudra Ekonomika, 4(2), 101–113, 2020, https://ejurnalunsam.id/index.php/jse/article/view/2303.
Wijaya, H. D., & Dwiasnati, S. "Implementasi Data Mining dengan Algoritma Naïve Bayes pada Penjualan Obat". Jurnal Informatika, 7(1), 1–7, 2020. https://doi.org/10.31311/ji.v7i1.6203
Dina Sunia, Kurniabudi, P. A. J. "Penerapan Data Mining untuk Clustering Data Penduduk Miskin Menggunakan Algoritma K-Means". Jurnal Ilmiah Mahasiswa Teknik Informatika, Vol 1 No 2, 121–134, 2019.
Halim, J. "Penerapan Data Mining Untuk Mengukur Tingkat Kepuasan Siswa Terhadap Pelayanan Di Bimbingan Belajar Al-Misbah Dengan Menggunakan Metode K-Means".Vol. 16, No 1, 2018.
R. R. Putra, N. A. Putri, and C. Wadisman, “Village Fund Allocation Information System for Community Empowerment in Klambir Lima Kebun Village,” J. Appl. …, vol. 3, no. 2, pp. 98–104, 2022, [Online]. Available: https://journal.yrpipku.com/index.php/jaets/article/view/681%0Ahttps://journal.yrpipku.com/index.php/jaets/article/download/681/467
Hermawati, F. A. Data Mining. Yogyakarta: Penerbit Andi, 2018.
Kusrini dan taufiq, Emha. Algoritma Data Mining. CV. Andi Offset, Jogjakarta, 2019.
Larose, Daniel T. Discovering Knowledge in Data: An Introduction to Data Mining.John Willey & Sons, Inc. 2018.
Sallaby, A. F., & Suryana, E. "Penerapan Data Mining untuk Menentukan Jumlah Pencari Kerja Terdaftar Berdasarkan Umur dan Pendidikan Menggunakan KMeans Clustering (Studi Kasus di Dinas Tenaga Kerja Dan Transmigrasi Provinsi Bengkulu)". Journal of Technopreneurship and Information System (JTIS), 1(1), 2018a. https://doi.org/10.36085/jtis.v1i2.28
Gustientiedina, Gustientiedina, M. Hasmil Adiya, and Yenny Desnelita. "Penerapan Algoritma K-Means Untuk Clustering Data Obat-Obatan." Jurnal Nasional Teknologi Dan Sistem Informasi, vol 5. no 1 pp 17-24, 2019.
F. Kurnia, J. Kurniawan, and I. Fahmi, “Klasifikasi Keluarga Miskin Menggunakan Metode K-Nearest Neighbor Berbasis Euclidean Distance,” in Seminar Nasional Teknologi Informasi, Komunikasi dan Industri (SNTIKI), vol. 11, pp. 230–239, 2019.
A. M. Argina, “Penerapan Metode Klasifikasi K-Nearest Neigbor pada Dataset Penderita Penyakit Diabetes,” Indones. J.Data Sci., vol. 1, no. 2, pp. 29–33, 2020.
I. W. Supriana and L. G. Astuti, “Implementasi K-Nearest Neighbor Pada Penentuan Keluarga Miskin Bagi Dinas Sosial Kabupaten Tabanan,” J. Teknol. Inf. dan Komput, vol. 5, no. 1, pp. 120–129, 2019
H. B. Suhartini, “Klasifikasi Algoritma K-Nearest Neighbor Berbasis Particle Swarm Optimization Untuk Kelayakan Bantuan Rehabilitasi Rumah Tidak Layak Huni Pada Desa Lenek Duren Kecamatan Aikmel Kabupaten Lombok Timur Suhartini1, Hariman,” vol, vol. 2, pp. 79–85, 2019.
Sulistiyawati, Ari, and Eko Supriyanto. "Implementasi Algoritma K-means Clustring dalam Penetuan Siswa Kelas Unggulan." Jurnal Tekno Kompak vol 15.no 2 pp 25-36, 2021.
C. Rizal, Supriyandi, M. Amin. “Perancangan Aplikasi Pengelolaan Keuangan Desa MelaluiE-Village Budgeting,” Bull. Comput. Sci. Res., vol. 3, no. 1, pp. 7–13, 2022, doi: 10.47065/bulletincsr.v3i1.181.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Klasifikasi Pencari Kerja pada Disnaker Menggunakan Metode K-Means Clustering
ARTICLE HISTORY
How to Cite
Issue
Section
Copyright (c) 2024 M. Aqshal Al Fachrizy, Hendri

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).