Penerapan Algoritma K-Means dalam Segmentasi Anggota Koperasi Berdasarkan Pola Simpanan dengan Analisis RFMP untuk Meningkatkan Loyalitas
DOI:
https://doi.org/10.47065/bulletincsr.v6i1.843Keywords:
Cooperative; K-Means Clustering; Data Mining; Elbow Method; SavingsAbstract
Cooperatives as member-based financial institutions have an important role in supporting the welfare of their members. However, the diversity of member characteristics, both in terms of length of membership and the amount of monthly savings, poses challenges in formulating effective management strategies. This study aims to group cooperative members based on financial transaction data patterns using a data mining approach. The method used is the K-Means Clustering algorithm, with the main variables using RFMP analysis (Recency, Frequency, Monetary and Payment), namely length of membership (Recency), frequency of savings in a year (Frequency), amount of monthly savings (Monetary) and timely loan payments (Payment). Data is processed through a pre-processing stage, the data is normalized using the Min–Max Scaling method to equalize unit differences between variables, Determination of the optimal number of clusters is done using the Elbow Method, which shows that the best number of clusters is three groups. The results of the study with a total of 50 transaction data resulted in cooperative members being divided into three clusters. The first cluster is at-risk members at 36%, the second cluster is potential members at 40%, and the third cluster is loyal or exclusive members at 24%. These findings provide practical solutions for cooperatives in developing member management strategies. Existing members need to be motivated to increase savings, new members need coaching to foster loyalty, and premium members need special services to maintain their satisfaction. Thus, clustering results can form the basis for data-driven decision-making in cooperative management.
Downloads
References
A. R. Naufal and A. T. Suseno, “Penerapan Fitur Seleksi dan Particle Swarm Optimization pada Algoritma Support Vector Machine untuk Analisis Credit Scoring,” J. Comput. Syst. Informatics, vol. 5, no. 1, pp. 184–195, 2023, doi: 10.47065/josyc.v5i1.4409.
A. Rifqi and R. T. Aldisa, “Penerapan Data Mining dalam Implementasi Algoritma K-Means Clustering untuk Pelanggan Potensial pada Koperasi Simpan Pinjam,” Build. Informatics, Technol. Sci., vol. 5, no. 2, 2023, doi: 10.47065/bits.v5i2.4278.
N. Teguh Santoso and Y. Suhari, “SPK Pemberian Pinjaman Menggunakan Metode AHP Dan SAW (Studi Kasus KSP Bhina Raharja Purbalingga),” JATISI (Jurnal Tek. Inform. dan Sist. Inf., vol. 10, no. 1, pp. 2407–4322, 2023, doi: https://doi.org/10.35957/jatisi.v10i1.2695.
D. T. Larose, Data Mining Methods and Models. Canada: John Wiley & Sons, Inc, 2007.
E. Omol, D. Onyangor, L. Mburu, and P. Abuonji, “Application Of K-Means Clustering For Customer Segmentation In Grocery Stores In Kenya,” Int. J. Sci. Technol. Manag., vol. 5, no. 1, pp. 192–200, 2024, doi: 10.46729/ijstm.v5i1.1024.
R. Siagian, P. Sirait, and A. Halim, “The Implementation of K-Means dan K-Medoids Algorithm for Customer Segmentation on E-commerce Data Transactions,” Sistemasi, vol. 11, no. 2, p. 260, 2022, doi: 10.32520/stmsi.v11i2.1337.
R. B. Ardi, F. Ely Nastiti, and S. Sumarlinda, “Algoritma K-Means Clustering Untuk Segmentasi Pelanggan (Studi Kasus?: Fashion Viral Solo),” INFOTECH J., vol. 9, no. 1, pp. 124–131, 2023, doi: 10.31949/infotech.v9i1.5214.
A. T. Suseno, A. R. Naufal, and M. Al Amin, “Market Based Analysis Sebagai Peningkatan Penjualan Produk Menggunakan Algoritma K-Medoids Dan Fp-Growth,” J. Tek. Inf. dan Komput., vol. 5, no. 2, p. 301, 2022, doi: 10.37600/tekinkom.v5i2.646.
Florensia Angela Renya Seran, Yosep PK Kelen, and Darsono Nababan, “Sistem Pendukung Keputusan Penentuan Jurusan Menggunakan Metode Weighted Product,” J. Tekno Kompak, vol. 17, no. 1, pp. 147–159, 2020.
R. Raswini, C. Ramdani, and Y. D. Prasetyo, “Sistem Pendukung Keputusan Pemilihan Jurusan Menggunakan Metode Analytical Hierarchy Process,” JURIKOM (Jurnal Ris. Komputer), vol. 9, no. 4, p. 810, 2022, doi: 10.30865/jurikom.v9i4.4449.
M. F. Fadhillah, A. Lovely, A. Suyoso, and I. Puspitasari, “Segmentasi Pelanggan dengan Algoritma Clustering Berdasarkan Atribut Recency, Frequency dan Monetary (RFM),” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 5, no. January, pp. 48–56, 2025, doi: https://doi.org/10.57152/malcom.v5i1.1491.
S. M. Monalisa and D. A. Anjainah, “Analisis Rekomendasi Produk Berdasarkan Segmentasi Pelanggan Menggunakan Algoritma DBSCAN dan FP-Growth,” Techno.Com, vol. 21, no. 4, pp. 948–956, 2022, doi: 10.33633/tc.v21i4.6697.
D. Diotivano, D, Ruslianto, Ikhwan, Prawira, “Sistem Segementasi Pelanggan Potensial Menggunakan Metode K-Means dan Analisis RFM,” J. Komput. dan Apl., vol. 11, no. 03, pp. 325–337, 2023, doi: https://doi.org/10.26418/coding.v11i03.53238.
J. Chitra and J. Heikal, “Customer segmentation using the K-Means Clustering algorithm in Foreign Banks in Indonesia,” Indones. Account. Res. J., vol. 11, no. 4, pp. 230–241, 2024, doi: https://doi.org/10.80701/IARN.v9i1.7931.
S. Sharma, R. Satsangi, P. Manani, P. Sharma, and J. Gupta, “Strategic Insights into Customer Diversity: Unraveling Purchase Patterns, Income Disparities, and Relationship Dynamics through K-means Clustering for Enhanced Engagement and Loyalty,” Procedia Comput. Sci., vol. 259, pp. 1–10, 2025, doi: 10.1016/j.procs.2025.03.301.
F. O. Dayera, Musa Bundaris Palungan, “AI-Driven Customers Segmentation Using K-Means Clustering,” G-Tech J. Teknol. Terap., vol. 8, no. 1, pp. 186–195, 2024, doi: https://doi.org/10.70609/gtech.v9i1.6202.
V. Alvianatinova, I. Ali, N. Rahaningsih, and A. Bahtiar, “Penerapan Algoritma K-Means Clustering Dalam Pengelompokan Data Penjualan Supermarket Berdasarkan Cabang (Branch),” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 2, pp. 1529–1535, 2024, doi: 10.36040/jati.v8i2.8993.
Baiq Nikum Yulisasih, H. Herman, and S. Sunardi, “K-Means Clustering Method For Customer Segmentation Based On Potential Purchases,” J. ELTIKOM, vol. 8, no. 1, pp. 83–90, 2024, doi: 10.31961/eltikom.v8i1.1137.
N. A. Maori, “Metode Elbow Dalam Optimasi Jumlah Cluster Pada K-Means Clustering,” SIMETRIS (Jurnal Tek. Ind. Mesin, Elektro dan Ilmu Komputer), vol. 14, no. 2, pp. 277–287, 2023, doi: https://doi.org/10.24176/simet.v14i2.9630.
P. Vania and B. N. Sari, “Perbandingan Metode Elbow dan Silhouette untuk Penentuan Jumlah Klaster yang Optimal pada Clustering Produksi Padi menggunakan Algoritma K-Means,” Ilmiah, J. Pendidikan, Wahana Pendidikan, Wahana, vol. 9, no. November, pp. 547–558, 2023, doi: https://doi.org/10.5281/zenodo.10081332.
S. L. Achmad, A. Fauzi, Rahmat, and J. Indra, “Segmentasi pelanggan menggunakan k-means clustering di toko retail,” vol. 7, pp. 736–747, 2024, doi: 10.37600/tekinkom.v7i2.1226.
A. R. Naufal, R. Ngizudin, and D. Rachdantia, “Penerapan Digitalisasi Koperasi dan Pemasaran serta Pendampingan untuk Peningkatan Value Produk UMKM Anggota Koperasi LKMS Kasuwari di Pekalongan Barat,” J. ABDINUS J. Pengabdi. Nusant., vol. 9, no. 1, pp. 140–150, 2025, doi: https://doi.org/10.29407/ja.v9i1.23670.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Penerapan Algoritma K-Means dalam Segmentasi Anggota Koperasi Berdasarkan Pola Simpanan dengan Analisis RFMP untuk Meningkatkan Loyalitas
ARTICLE HISTORY
How to Cite
Issue
Section
Copyright (c) 2025 Abdul Razak Naufal, Turkhamun Adi Kurniawan, M Al’Amin

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).













