Optimalisasi Prediksi Parameter Lingkungan Menggunakan Model LSTM Multivariat dan Univariat


Authors

  • Chandra Nilasari Yunantara Universitas Semarang, Semarang, Indonesia
  • April Firman Daru Universitas Semarang, Semarang, Indonesia

DOI:

https://doi.org/10.47065/bulletincsr.v5i6.813

Keywords:

LSTM; Multivariate; Univariate; Prediction

Abstract

Environmental parameter prediction plays an essential role in supporting weather monitoring and data-driven decision-making, particularly in urban areas. However, prediction accuracy is often limited by a model’s ability to capture the interrelationships among environmental parameters. This study aims to analyze and compare the performance of two Long Short-Term Memory (LSTM) approaches Multivariate and Univariate in predicting air temperature as the dependent variable. In the Multivariate model, temperature prediction is influenced by other independent variables such as humidity, pressure, and altitude, whereas in the Univariate model, temperature prediction is based solely on its historical data. The model architecture consists of three main layers an input layer, two hidden layers, and an output layer. Model performance was evaluated using Root Mean Square Error (RMSE), Mean Square Error (MSE), and Mean Absolute Percentage Error (MAPE). The experimental results show that the multivariate LSTM model produces lower error values for temperature and pressure parameters, while the univariate LSTM model performs better for humidity and altitude. Therefore, the multivariate model is more suitable when the interrelationships among environmental parameters significantly influence prediction outcomes.

Downloads

Download data is not yet available.

References

N. W. Shen, A. A. Bakar, and H. Mohamad, “Univariate and Multivariate Long Short Term Memory (LSTM) Model to Predict Covid-19 Cases in Malaysia Using Integrated Meteorological Data,” Malaysian J. Fundam. Appl. Sci., vol. 19, no. 4, pp. 653–667, 2023, doi: 10.11113/mjfas.v19n4.2814.

V. Domala and T. W. Kim, “A Univariate and multivariate machine learning approach for prediction of significant wave height.,” Ocean. Conf. Rec., vol. 2022-Octob, no. December, 2022, doi: 10.1109/OCEANS47191.2022.9977028.

T. Limouniac, R. Yaagoubib, K. Bouzianec, K. Guissia, and E. H. Baalia, “Univariate and Multivariate LSTM Models for One Step and Multistep PV Power Forecasting | Limouni | International Journal of Renewable Energy Development,” Int. J. Renew. Energy Dev., vol. 11, no. 3, pp. 815-828., 2022, [Online]. Available: https://ijred.cbiore.id/index.php/ijred/article/view/43953

R. A. B. Khalil and A. A. B. U. Bakar, “A Comparative Study of Deep Learning Algorithms in Univariate and Multivariate Forecasting of the Malaysian Stock Market,” Sains Malaysiana, vol. 52, no. 3, pp. 993–1009, 2023, doi: 10.17576/jsm-2023-5203-22.

N. Izzany, M. Masjkur, and A. Rizki, “Application of Univariate and Multivariate Long Short Term Memory for World Crude Palm Oil Price Prediction,” Indones. J. Stat. Its Appl., vol. 9, no. 1, pp. 10–20, 2025, doi: 10.29244/ijsa.v9i1p10-20.

P. Sugiartawan and S. Gusprio Santoso, “Multivariate Forecasting Curah Hujan Menggunakan Algoritma LSTM Di Kota Denpasar,” Semin. Nas. Corisindo, pp. 580–585, 2022.

M. J. Abbass, R. Lis, and W. Rebizant, “A Predictive Model Using Long Short-Time Memory (LSTM) Technique for Power System Voltage Stability,” Appl. Sci., vol. 14, no. 16, 2024, doi: 10.3390/app14167279.

A. Mahmoudi, “Investigating LSTM-based time series prediction using dynamic systems measures,” Evol. Syst., vol. 16, no. 2, pp. 1–18, 2025, doi: 10.1007/s12530-025-09703-y.

X. Song, L. Deng, H. Wang, Y. Zhang, and Y. He, “Deep learning-based time series forecasting,” 2025.

A. A. L. Rahmah, “Analisis Model Multivariate Long Short-Term Memory Untuk Prakiraan Kualitas Udara Dki Jakarta Berdasarkan Data Tahun 2010-2022,” Repository.Uinjkt.Ac.Id, pp. 1–87, 2024

I. F. Efaranti, “Peramalan Data Kualitas Udara Menggunakan Multivariat LSTM di Wilayah Kota Surabaya,” 2024.

A. Kharel, Z. Zarean, and D. Kaur, “Long Short-Term Memory (LSTM) Based Deep Learning Models for Predicting Univariate Time Series Data,” Int. J. Mach. Learn., vol. 14, no. 1, 2024, doi: 10.18178/ijml.2024.14.1.1154.

T. A. Prasetyo et al., “Evaluating the efficacy of univariate LSTM approach for COVID-19 data prediction in Indonesia,” Indones. J. Electr. Eng. Comput. Sci., vol. 34, no. 2, pp. 1353–1366, 2024, doi: 10.11591/ijeecs.v34.i2.pp1353-1366.

O. Assaf, G. Di Fatta, and G. Nicosia, “Multivariate LSTM for Stock Market Volatility Prediction,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 13164 LNCS, no. February, pp. 531–544, 2022, doi: 10.1007/978-3-030-95470-3_40.

R. Tanjung, A. Listiani, and F. Lestari, “Prediksi Multivariate Time Series Parameter Cuaca Menggunakan Long Short - Term Memory (LSTM),” Pros. Semin. Nas. Sains Data, vol. 4, no. 1, pp. 445–456, 2024, doi: 10.33005/senada.v4i1.253.

Furizal, A. Ritonga, A. Ma’arif, and I. Suwarno, “Stock Price Forecasting with Multivariate Time Series Long Short-Term Memory: A Deep Learning Approach,” J. Robot. Control, vol. 5, no. 5, pp. 1322–1335, 2024, doi: 10.18196/jrc.v5i5.22460.

S. Salehi, M. Kavgic, H. Bonakdari, and L. Begnoche, “Comparative study of univariate and multivariate strategy for short-term forecasting of heat demand density: Exploring single and hybrid deep learning models,” Energy AI, vol. 16, no. January, p. 100343, 2024, doi: 10.1016/j.egyai.2024.100343.

G. Davies, “Evaluating the effectiveness of predicting covariates in LSTM Networks for Time Series Forecasting,” ArXiv, 2024, [Online]. Available: http://arxiv.org/abs/2404.18553

A. K. Salem and A. A. Abokifa, “A Multivariate LSTM Model for Short-Term Water Demand Forecasting †,” Eng. Proc., vol. 69, no. 1, pp. 1–4, 2024, doi: 10.3390/engproc2024069167.

E. Yang, H. Zhang, X. Guo, Z. Zang, Z. Liu, and Y. Liu, “A multivariate multi-step LSTM forecasting model for tuberculosis incidence with model explanation in Liaoning Province, China,” BMC Infect. Dis., vol. 22, no. 1, pp. 1–13, 2022, doi: 10.1186/s12879-022-07462-8.

A. W. Saputra, A. P. Wibawa, U. Pujianto, A. B. Putra Utama, and A. Nafalski, “LSTM-based Multivariate Time-Series Analysis: A Case of Journal Visitors Forecasting,” Ilk. J. Ilm., vol. 14, no. 1, pp. 57–62, 2022, doi: 10.33096/ilkom.v14i1.1106.57-62.

M. A. A. Bakar, N. M. Mohd Ariff, M. S. Mohd Nadzir, O. L. Wen, and F. N. A. Suris, “Prediction of Multivariate Air Quality Time Series Data using Long Short-Term Memory Network,” Malaysian J. Fundam. Appl. Sci., vol. 18, no. 1, pp. 52–59, 2022, doi: 10.11113/MJFAS.V18N1.2393.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Optimalisasi Prediksi Parameter Lingkungan Menggunakan Model LSTM Multivariat dan Univariat

Dimensions Badge

ARTICLE HISTORY

Published: 2025-10-29

Abstract View: 41 times
PDF Download: 29 times

How to Cite

Nilasari Yunantara, C., & April Firman Daru. (2025). Optimalisasi Prediksi Parameter Lingkungan Menggunakan Model LSTM Multivariat dan Univariat. Bulletin of Computer Science Research, 5(6), 1315-1323. https://doi.org/10.47065/bulletincsr.v5i6.813

Issue

Section

Articles