Implementasi Metode Cosine Similarity Dalam Sistem Profiling Dosen Berbasis Data Bibliometrik Untuk Pemetaan Kompetensi Akademik
DOI:
https://doi.org/10.47065/bulletincsr.v5i6.811Keywords:
Lecturer Profiling; Streamlit; Cosine Similarity; TF-IDF; Competency MappingAbstract
Lecturer profiling based on scientific publications is a strategic component in managing human resources in higher education institutions. The manual process of identifying lecturer competencies often requires considerable time and may lead to inaccuracies. This study aims to develop an automated application for lecturer profiling and competency mapping to relevant courses using an unsupervised text similarity approach based on the Term Frequency–Inverse Document Frequency (TF-IDF) and Cosine Similarity methods. The application was developed using the Streamlit framework with integrated data from Google Scholar, SINTA, and Scopus. The evaluation involved 50 lecturers and 120 lecturer–course pairs, measured using accuracy, precision, recall, F1-score, response time, and usability metrics. The results show an accuracy of 85.3%, an F1-score of 0.853, an average response time of 2.3 seconds, and a usability score of 86.4, which falls into the excellent category. The system is capable of displaying interactive lecturer profiles, performing competency mapping to relevant courses, and generating automatic reports in PDF format. Therefore, this application effectively supports data-driven academic decision-making processes for assigning lecturers according to their areas of expertise.
Downloads
References
C. V Fry, J. Lynham, and S. Tran, “Ranking Researchers: Evidence from Indonesia,” Res Policy, vol. 52, no. 3, p. 104753, 2023, doi: 10.1016/j.respol.2023.104753.
S. Al Hakim, D. I. Sensuse, I. Budi, I. M. I. Subroto, and A. H. A. M. Siagian, “Expert Retrieval Based on Local Journals Metadata to Drive SMI Collaboration for Product Innovation,” Soc Netw Anal Min, vol. 13, no. 68, 2023, doi: 10.1007/s13278-023-01044-5.
K. Park, J. S. Hong, and W. Kim, “A Methodology Combining Cosine Similarity with Classifier for Text Classification,” Applied Artificial Intelligence, vol. 34, no. 5, pp. 396–411, 2020, doi: 10.1080/08839514.2020.1723868.
L. R. Aini and N. Yulianti, “Expertise Retrieval Using Adjusted TF-IDF and Keyword Mapping to ACM Classification Terms,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 9, no. 3, 2025, doi: 10.29207/resti.v9i3.6397.
T. P. Rinjeni, A. Indriawan, and N. A. Rakhmawati, “Matching Scientific Article Titles Using Cosine Similarity and Jaccard Similarity Algorithm,” in Procedia Computer Science, 2024, pp. 553–560. doi: 10.1016/j.procs.2024.03.039.
F. P. C. da Fonseca and others, “Improving Researcher’s Area of Expertise Identification Using TF-IDF Character N-Grams,” in Proc. 20th Brazilian Symposium on Human Factors in Computing Systems (IHC), 2021. doi: 10.1145/3466933.3466984.
S. Borna, B. A. Barry, S. Makarova, and others, “Artificial Intelligence Algorithms for Expert Identification in Medical Domains: A Scoping Review,” Eur J Investig Health Psychol Educ, vol. 14, no. 5, pp. 1182–1196, 2024, doi: 10.3390/ejihpe14050078.
S. Suryanto and A. S. F. Khan, “Text Classification Using Novel Term Weighting Scheme and TF-IDF Variant,” Math Probl Eng, vol. 2021, p. 6619088, 2021, doi: 10.1155/2021/6619088.
J. Lu, H. Wang, and P. Chen, “A Comparative Study of TF-IDF, Word2Vec, FastText, BERT, and GPT for Text Processing Tasks,” in Informatics Studies International Symposium, 2025, pp. 543–551. doi: 10.18280/isi.300606.
A. Sabilillah, D. Nuraini, and B. Santoso, “Integration of Multi-Source Bibliometric Data for Academic Staff Profiling Using Cosine Similarity,” Indonesian Journal of Information Systems, vol. 9, no. 1, pp. 45–56, 2024, doi: 10.20885/ijis.vol9.iss1.art5.
P. Yasni, R. Fathurrahman, and N. Lestari, “Semantic Text Matching for Academic Expertise Mapping Using TF-IDF and Cosine Similarity,” Journal of Data and Knowledge Engineering, vol. 15, no. 2, pp. 101–115, 2024, doi: 10.31940/jdke.v15i2.3419.
S. Hairani, “Bibliometric-Based Lecturer Profiling to Support Academic Competency Mapping in Higher Education,” International Journal of Computer Science and Education, vol. 5, no. 4, pp. 223–231, 2023, doi: 10.24815/ijcse.v5i4.29457.
D. Velez, R. Seepold, and N. M. Madrid, “Development of an expert system to overpass citizens technological barriers on smart home and living,” in Procedia Computer Science, Elsevier B.V., 2023, pp. 626–634. doi: 10.1016/j.procs.2023.10.048.
M. Aydinli, C. Liang, and T. Dandekar, “Motif and conserved module analysis in DNA (promoters, enhancers) and RNA (lncRNA, mRNA) using AlModules,” Sci Rep, vol. 12, no. 1, Dec. 2022, doi: 10.1038/s41598-022-21732-0.
X. Huan and H. Zhou, “Integrating Advanced Language Models and Vector Database for Enhanced AI Query Retrieval in Web Development,” Int J Adv Comput Sci Appl, 2024, [Online]. Available: www.ijacsa.thesai.org
A. Rahmatulloh and R. Gunawan, “Web Scraping with HTML DOM Method for Data Collection of Scientific Articles from Google Scholar,” 2020.
H. Qo’du, I. Hakim, S. S. Bilqis, R. Ramadhani, and R. Vindua, “Tinjauan Literatur: Efektivitas Sistem Informasi Akademik Berbasis Web di Perguruan Tinggi,” 2025.
M. Ridwan and A. R. Yusuf, “Sistem Informasi Akademik Berbasis Framework Bootstrap untuk Pengelolaan Data Akademik dan Administrasi,” SULIWA: Jurnal Multidisiplin Teknik, Sains, Pendidikan dan Teknologi, vol. 2, no. 2, pp. 112–124, Jul. 2025, doi: 10.62671/suliwa.v2i2.66.
H. Wakkang and B. Irianto, “Implementasi Web Service dengan Metode REST API untuk Integrasi Data COVID-19 di Sulawesi Selatan,” Jurnal Sistem Informasi dan Logika (JSILOG), vol. 2, no. 1, pp. 12–22, doi: 10.31850/jsilog.v2i1.
N. Sulis, C. Ibrahim, A. Jaya, and R. Handayani, “Analisis Bibliometrik Pola Produktivitas Pengarang Bidang Ilmu Perpustakaan Terindeks SINTA dengan Pendekatan Hukum Lotka,” Lentera Pustaka: Jurnal Kajian Ilmu Perpustakaan, Informasi dan Kearsipan, vol. 8, no. 2, pp. 143–154, Dec. 2022, doi: 10.14710/lenpust.v8i2.46998.
A. M. Priyatno, M. R. A. Prasetya, P. Cholidhazia, and R. K. Sari, “Comparison of Similarity Methods on New Student Admission Chatbots Using Retrieval-Based Concepts.”
M. G. Wonoseto and M. Y. Alfiandy, “Implementasi Metode Fuzzy AHP untuk Sistem Pendukung Keputusan Peminjaman pada Koperasi Kredit Sejahtera,” Jurnal Sistem Informasi Bisnis, vol. 13, no. 2, pp. 104–111, Oct. 2023, doi: 10.21456/vol13iss2pp104-111.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Implementasi Metode Cosine Similarity Dalam Sistem Profiling Dosen Berbasis Data Bibliometrik Untuk Pemetaan Kompetensi Akademik
ARTICLE HISTORY
How to Cite
Issue
Section
Copyright (c) 2025 Jefry Sunupurwa Asri, Firnanda Amalia, Muhammad Thifaal Dzaki, Muhammad Fikri, Ardra Rianisa

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).













