Analisis Kinerja Random Forest Dalam Deteksi Gejala Alergi Rongga Mulut Berbasis Warna Gusi


Authors

  • Juli Hartati Gea Universitas Kristen Immanuel, Yogyakarta, Indonesia
  • Agustinus Rudatyo Himamunanto Universitas Kristen Immanuel, Yogyakarta, Indonesia
  • Haeny Budiati Universitas Kristen Immanuel, Yogyakarta, Indonesia

DOI:

https://doi.org/10.47065/bulletincsr.v5i4.657

Keywords:

Allergy Detection; Gum Color; HSV; Random Forest; Machine Learning

Abstract

Early detection of allergies in the oral cavity remains challenging due to the subjective nature of visual assessment and limited access to diagnostic facilities. This study proposes a novel approach using the Random Forest algorithm to classify the severity of allergic symptoms based on gum color analysis from digital images. A total of 2,742 gum images were clinically categorized using the Modified Gingival Index (MGI) into mild, moderate, and severe conditions. Preprocessing included conversion to HSV color space and adaptive segmentation using red thresholds on the hue channel (0–10 and 160–180), saturation > 50, and value > 40. Statistical features, including mean, standard deviation, skewness, kurtosis, and entropy, were extracted and normalized using Z-Score. Six parameter combinations were tested with an 80:20 train-test split. The optimal configuration with n_estimators=80, max_depth=9, and min_samples_leaf=2 achieved an accuracy of 95.81%. The highest performance was achieved in the mild class with precision and recall of 98.91%, and stable results in the moderate (93.80%) and severe (94.74%) classes, with only a 0.94% difference. Cross-validation evaluation demonstrated excellent model stability, with an average accuracy of 95.30% and a standard deviation of 0.67%, indicating consistent performance across data subsets. Feature importance analysis showed the dominance of the hue and saturation channels, particularly kurtosis and mean saturation. This study demonstrates that a Random Forest-based allergy detection system using gum color is highly accurate and effective as a non-invasive screening tool in dental and oral health, especially in resource-limited settings, with the potential to improve early screening access in primary healthcare facilities.

Downloads

Download data is not yet available.

References

Ganesha, R., "Management Of Allergic Stomatitis Caused By Chicken And Egg," Interdental: Jurnal Kedokteran Gigi, Vol.17, No. 1, 34-40, 2021, https://doi.org/10.46862/interdental.v17i1.1947.

D. Tetan-El, A. M. Adam, and H. Jubhari, “Gingival Diseases?: Plaque Induced and Non Plaque Induced,” Makassar Dent. J., vol. 1, no. 10, pp. 88–95, 2021, doi: 10.35856/mdj.v10i1.394.

M. Bidjuni, I. K. Harapan, and N. L. R. Astiti, “Tingkat Pengetahuan Tentang Cara Memelihara Kesehatan Gigi Dan Mulut Dengan Kejadian Gingivitis Masa Pubertas Pada Siswa Kelas VII A SMPN 8 Manado,” Jurnal Kesehatan Gigi (Dental Health Journal), vol. 10, no. 2, p. 2023, doi: 10.33992/jkg.v10i2.2750.

K. Ba?ol, E. Ünsal, M. E. Ba?ol, C. Paksoy, A. Ursava?, And S. Karacan Çelebi, “Evaluation of the Relationship Between Gingival Pigmentation and Smoking,” Eur. Ann. Dent. Sci., vol. 49, no. 3, pp. 120–124, 2022, doi: 10.52037/eads.2022.0038.

World Health Organization, "WHO guideline: recommendations on digital interventions for health system strengthening," Geneva: World Health Organization, 2019. [Online]. Available: https://apps.who.int/iris/handle/10665/311941.

M. F. R. Aditya, N. Lutvi, and U. Indahyanti, “Prediksi Penyakit Hipertensi Menggunakan Metode Decison Tree dan Random Forest,” J. Ilm. Komputasi, vol. 23, no. 1, pp. 9–16, 2024, doi: 10.32409/jikstik.23.1.3503.

A. Ghozali, H. Pratiwi, and S. S. Handajani, “Implementasi Data Mining Menggunakan Metode Random Forest Dan Support Vector Machine Dalam Klasifikasi Penyakit Diabetes,” Delta J. Ilm. Pendidik. Mat., vol. 11, no. 2, p. 147, 2023, doi: 10.31941/delta.v11i2.2686.

B. Anggo, S. Aji, Y. Setiawan, S. D. Anggraini, D. K. Surabaya, and U. Telkom, “Analisis Perbandingan Algoritma Decision Tree , Random Forest , dan XGBoost untuk Klasifikasi Penyakit Infeksi Gigi dan Mulut,” INTEGER: Journal of Information Technology, vol. 10, no. 1, pp. 135-148, Maret 2024. Available: https://ejurnal.itats.ac.id/integer/article/view/7501.

G. Tobias and A. B. Spanier, “Modified gingival index (MGI) classification using dental selfies,” Appl. Sci., vol. 10, no. 24, pp. 1–15, 2020, doi: 10.3390/app10248923.

G. Mediose, A. Sihotang, and J. Supardi, “Pengembangan Model CNN ResNet-18 untuk Klasifikasi Kondisi Gigi Berbasis Citra RGB sebagai Solusi Diagnostik Digital Development of CNN ResNet-18 Model for RGB Image-Based Dental Condition Classification as a Digital Diagnostic Solution,” Jurnal Pendidikan dan Teknologi Indonesia, vol. 4, no. 12, pp. 747–758, 2024, doi: https://doi.org/10.52436/1.jpti.568.

N. Wuryani and S. Agustiani, “Random Forest Classifier untuk Deteksi Penderita COVID-19 berbasis Citra CT Scan,” Jurnal Teknik Komputer AMIK BSI, vol. 7, no. 2, 2021, doi: 10.31294/jtk.v4i2.

M. D. Purbolaksono, M. Irvan Tantowi, A. Imam Hidayat, and A. Adiwijaya, “Perbandingan Support Vector Machine dan Modified Balanced Random Forest dalam Deteksi Pasien Penyakit Diabetes,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 2, pp. 393–399, 2021, doi: 10.29207/resti.v5i2.3008.

P. Wahyu Setiyo Aji, R. Dijaya, “Prediksi Penyakit Stroke Menggunakan Metode Random Forest,” J. Penerapan Sist. Inf., vol. 4, no. 4, pp. 916–924, 2023, doi: 10.31294/jtk.v4i2.

J. Gaussian, “Klasifikasi Menggunakan Metode Support Vector Machine Dan Random Forest Untuk Deteksi Awal Risiko Diabetes Melitus,” Jurnal Gaussian, vol. 11, no. 3, pp. 386–396, 2022, doi: 10.14710/j.gauss.11.3.386-396.

A. W. Nasution, “Klasifikasi Penyakit Infeksi Kulit pada Kucing Menggunakan Algoritma Random Forest,” 2023, Skripsi, Fakultas Teknik, Universitas Medan Area, Medan, 2023 [Online]. Available: https://repositori.uma.ac.id/jspui/handle/123456789/22717

Suci Amaliah, M. Nusrang, and A. Aswi, “Penerapan Metode Random Forest Untuk Klasifikasi Varian Minuman Kopi di Kedai Kopi Konijiwa Bantaeng,” VARIANSI J. Stat. Its Appl. Teach. Res., vol. 4, no. 3, pp. 121–127, 2022, doi: 10.35580/variansiunm31.

A. Sunyoto and H. Al Fatta, “Klasifikasi Penyakit Jantung Menggunakan Random Forest Clasifier,” Jurnal Sistem Komputer dan Kecerdasan Buatan, vol. VII, no. 1. September, pp. 31–40, 2023, doi: https://doi.org/10.47970/siskom-kb.v7i1.464

D. M. Alalharith et al., “A deep learning-based approach for the detection of early signs of gingivitis in orthodontic patients using faster region-based convolutional neural networks,” Int. J. Environ. Res. Public Health, vol. 17, no. 22, pp. 1–10, 2020, doi: 10.3390/ijerph17228447.

L. Lugovi?-Mihi?, I. Ili?, J. Budimir, N. Pondeljak, and M. M. Stipeti?, “Common allergies and allergens in oral and perioral diseases,” Acta Clin. Croat., vol. 59, no. 2, pp. 318–328, 2020, doi: 10.20471/acc.2020.59.02.16.

A. C. Mawarni, R. Rusdah, L. L. Hin, and D. Anubhakti, “Deteksi Dini Gejala Awal Penyakit Diabetes Menggunakan Algoritma Random Forest,” IDEALIS Indones. J. Inf. Syst., vol. 6, no. 2, pp. 165–171, 2023, doi: 10.36080/idealis.v6i2.3018.

Y. Herianto, S. Restuning, J. K. Gigi, P. D. Iii, and K. Gigi, “Gambaran Penyakit Gingivitis Pada Pasien Yang Bekunjung Ke Poli Gigi Rumah Sakit,” JURNAL KESEHATAN SILIWANGI, vol. 1, no. 1, pp. 1–5, 2020, Available: http://repo.poltekkesbandung.ac.id/id/eprint/138

D. R. Noak, “Klasifikasi Citra Rontgen Gigi Berdasarkan Analisis Tekstur Untuk Diagnosis Karies Gigi Manusia Menggunakan Metode SVM,” JELIKU (Jurnal Elektron. Ilmu Komput. Udayana), vol. 9, no. 1, p. 141, 2020, doi: 10.24843/jlk.2020.v09.i01.p14.

C. Gómez-Polo, J. Montero, and A. M. Martín Casado, “Explaining the colour of natural healthy gingiva,” Odontology, vol. 112, no. 4, pp. 1284–1295, 2024, doi: 10.1007/s10266-024-00906-4.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Analisis Kinerja Random Forest Dalam Deteksi Gejala Alergi Rongga Mulut Berbasis Warna Gusi

Dimensions Badge

ARTICLE HISTORY

Published: 2025-06-30

Abstract View: 63 times
PDF Download: 73 times

How to Cite

Gea, J. H., Agustinus Rudatyo Himamunanto, & Haeny Budiati. (2025). Analisis Kinerja Random Forest Dalam Deteksi Gejala Alergi Rongga Mulut Berbasis Warna Gusi. Bulletin of Computer Science Research, 5(4), 734-744. https://doi.org/10.47065/bulletincsr.v5i4.657

Issue

Section

Articles