Analisis Perbandingan Metode Convolutional Neural Network (CNN) untuk Deteksi Warna pada Objek
DOI:
https://doi.org/10.47065/bulletincsr.v5i4.617Keywords:
CNN; Color Detection; VGG16; Xception; NASNet MobileAbstract
This research aims to evaluate and compare the performance of three Convolutional Neural Network (CNN) architectures, namely VGG16, Xception, and NASNet Mobile, in detecting colors on objects. The main problem in this research is to determine the architecture with the most effective and efficient combination of hyperparameters to detect colors on objects. The research process includes problem identification, object color dataset collection, image preprocessing, training of three CNN models (VGG16, Xception, and NASNet Mobile), and performance evaluation using accuracy, precision, recall, and f1-score metrics. In addition, a comparative analysis of the performance of each model based on the combination of hyperparameters used, such as optimizer, batch size, and learning rate. The analysis also includes evaluating computational efficiency by measuring the training time and prediction time of each model, as well as examining the relationship between architectural complexity and classification performance. The results of the analysis are used to determine the most optimal model that is feasible to implement in an object color detection system. The test results show that NASNet Mobile provides the best performance with an accuracy of 88% and a prediction time of 2 minutes 22 seconds for 2904 images. The Xception model produced an accuracy of 86% with a prediction time of 4 minutes 22 seconds, while VGG16 recorded an accuracy of 90% with a prediction time of 10 minutes 9 seconds.
Downloads
References
D. A. L. Sari, A. Mulyadi, A. Pratama, and R. Nalandari, “DETEKSI OBJEKBERWARNA REAL TIME BERDASARKAN VISUALISASI WEBCAM,” Zetroem, vol. 02, no. 01, Mar. 2020.
K. Angin, D. Teknik, and P. Citra, “Implementasi Metode K-Means Clustering untuk Mengklasterikasikan Kipas Angin dengan Teknik Pengolahan Citra,” J. Inform. Teknol. dan Sains, vol. 7, no. 1, pp. 354–360, 2025.
S. Saini, E. Febriani Dungga, and I. Sulistiani, “Evaluasi Pemeriksaan Tes Buta Warna Menggunakan Metode Ishihara Berbasis Google Form Menggunakan Buku Ishihara,” Indones. J. Pharm. Educ., vol. 2, no. 1, pp. 42–51, 2022, doi: 10.37311/ijpe.v2i1.15855.
K. P. Lakshmi, A. Kalidindi, J. Chilukala, K. Nerella, W. Shaik, and D. Cherukuri, “A Color Guide for Color Blind People Using Image Processing and OpenCV,” Int. J. online Biomed. Eng., vol. 19, no. 9, pp. 30–46, 2023, doi: 10.3991/ijoe.v19i09.39177.
J. Pardede, “Implementation of Transfer Learning Using VGG16 on Fruit Ripeness Detection,” I.J. Intell. Syst. Appl., no. April, pp. 52–61, 2021, doi: 10.5815/ijisa.2021.02.04.
N. A. Batubara and R. Maulana, TUTORIAL OBJECT DETECTION PLATE NUMBER WITH CONVOLUTION NEURAL NETWORK (CNN). 2020.
?. ?. Rolly Maulana Awangga, S.T., M. K. Roni Andarsyah, S.T., and E. C. Putro, Tutorial Object Detection People With Faster Region-Based Convolutional Neural Network (Faster R-CNN. 2020.
M. F. Naufal and S. F. Kusuma, “Analisis Perbandingan Algoritma Machine Learning dan Deep Learning untuk Klasifikasi Citra Sistem Isyarat Bahasa Indonesia (SIBI),” J. Teknol. Inf. dan Ilmu Komput., vol. 10, no. 4, pp. 873–882, 2023, doi: 10.25126/jtiik.20241046823.
R. L. Gaho, I. T. Ali, and E. Prakasa, “Klasifikasi Kualitas Permukaan Jalan Raya Menggunakan Metode CNN Berbasis Arsitektur Xception,” INOVTEK POLBENG, vol. 9, no. 1, pp. 354–365, 2024.
N. Hardi, U. Bina, S. Informatika, K. J. Pusat, and N. Mobile, “Komparasi Algoritma MobileNet Dan Nasnet Mobile Pada Klasifikasi Penyakit Daun Teh,” Rekayasa Perangkat Lunak, vol. 3, no. 1, 2022.
N. Saefulloh, J. Indra, and A. Ratna Juwita, “Implementasi Algoritma Convolutional Neural Network (CNN) Untuk Klasifikasi Kecacatan Pada Proses Welding di Perusahaan Manufacturing,” Technol. Sci., vol. 6, no. 1, pp. 387–394, 2024, doi: 10.47065/bits.v6i1.5321.
S. Dhage, H. Chawan, A. Hoskote, A. Dabholkar, and V. Deshmukh, “Skin Cancer Classification Using Transfer Learning,” Lect. Notes Networks Syst., vol. 1080 LNNS, no. January, pp. 177–186, 2024, doi: 10.1007/978-3-031-67444-0_17.
T. B. Sasongko, Haryoko, and A. Amrullah, “ANALISIS EFEK AUGMENTASI DATASET DAN FINE TUNE PADA ALGORITMAPRE-TRAINED CONVOLUTIONAL NEURAL NETWORK (CNN),” J. Teknol. Inf. dan Ilmu Komput., vol. 10, no. 4, 2023.
A. Y. Yulestiono, M. M. Subagio, M. S. Bhakti, and A. P. Sari, “Perbandingan Kinerja Metode Convolutional Neural Network (CNN) dan VGG-16 dalam Klasifikasi Rambu Lalu Lintas,” J. Mhs. Tek. Inform., vol. 3, no. 2, pp. 1–23, 2024.
M. E. Purba, A. Z. Situmorang, G. L. B. Ginting, M. W. P. Lubis, and rans M. Sinaga, “Klasifikasi Sampah Organik dan Anorganik Menggunakan Algoritma CNN,” J. Sifo Mikroskil, vol. 26, no. 1, 2025.
W. Setiawan, Deep Learning menggunakan Convolutional Neural Network: Teori dan Aplikasi. 2020.
R. Maulana, R. Dwi Zahra Putri, T. Ade Amelia, H. Syahputra, and F. Ramadhani, “Identifikasi Jenis Rempah-Rempah Indonesia Dengan Convolutional Neural Network (Cnn) Menggunakan Arsitektur Vgg16,” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 4, pp. 6034–6039, 2024, doi: 10.36040/jati.v8i4.10138.
S. K. Addagarla, “Real Time Multi-Scale Facial Mask Detection and Classification Using Deep Transfer Learning Techniques,” Int. J. Adv. Trends Comput. Sci. Eng., vol. 9, no. 4, 2020, doi: 10.30534/ijatcse/2020/33942020.
A. T. Akbar, S. Saifullah, and H. Prapcoyo, “Klasifikasi Ekspresi Wajah Menggunakan Covolutional Neural NetworkKlasifikasi Ekspresi Wajah Menggunakan Covolutional Neural Network,” J. Teknol. Inf. dan Ilmu Komput., vol. 11, no. 6, 2024.
O. Adam, “Klasifikasi Hama Pada Daun Sawi Menggunakan Convolutional Neural Network ( CNN ) Dengan Algoritma Xcaption dan,” JEECOM (Journal Electr. Eng. Comput., vol. 6, no. 2, pp. 359–370, 2024, doi: 10.33650/jeecom.v4i2.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Analisis Perbandingan Metode Convolutional Neural Network (CNN) untuk Deteksi Warna pada Objek
ARTICLE HISTORY
How to Cite
Issue
Section
Copyright (c) 2025 Dila Ayu Prastita, Andika Setiawan, Ilham Firman Ashari

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).