Analisis Perbandingan Algoritma SVM dan CNN dalam Mendeteksi Website Judi Online Berdasarkan Konten Teks


Authors

  • Nurcahaya Simanjuntak Universitas Amikom Yogyakarta, Sleman, Indonesia
  • Alva Hendi Muhammad Universitas Amikom Yogyakarta, Sleman, Indonesia

DOI:

https://doi.org/10.47065/bulletincsr.v5i4.586

Keywords:

Website Detection; Online Gambling; Support Vector Machine; Convolutional Neural Network; Text Pre-processing

Abstract

This study aims to compare the effectiveness of Support Vector Machine (SVM) and Convolutional Neural Network (CNN) algorithms in detecting Indonesian-language online gambling websites. With the increasing number of online gambling players in Indonesia, it is essential to develop effective methods for identifying gambling content. The dataset used consists of 34,336 gambling websites and 36,529 non-gambling websites, collected through web scraping. The SVM model demonstrated an accuracy of 99%, with evaluation metrics including a precision of 1.00, recall of 0.99, and F1-score of 0.99. In contrast, the CNN model achieved perfect accuracy of 100%, with precision, recall, and F1-score all at 1.00. However, it is important to note that this perfect accuracy was achieved under certain conditions, including a relatively clean dataset and optimal training processes. Evaluation results using cross-validation techniques indicated that SVM maintained a consistent accuracy of approximately 99%, while CNN exhibited an average accuracy of 99.61% with a very low standard deviation. This research emphasizes the importance of data pre-processing in enhancing model accuracy and highlights the advantages of CNN in capturing complex patterns within text. These findings contribute significantly to the development of detection methods for online gambling websites in Indonesia and open avenues for further research in this field.

Downloads

Download data is not yet available.

References

Y. Chen, R. Zheng, A. Zhou, S. Liao, and L. Liu, “Automatic detection of pornographic and gambling websites based on visual and textual content using a decision mechanism,” Sensors (Switzerland), vol. 20, no. 14, pp. 1–21, 2020, doi: 10.3390/s20143989.

R. T. Huang, C. H. Shih, T. C. Lin, and W. Y. Lin, “The Study on Illegal Online Gambling Investigation in Taiwan,” Procedia Comput. Sci., vol. 207, no. Kes, pp. 2901–2910, 2022, doi: 10.1016/j.procs.2022.09.348.

Kominfo, “Hindari Jerat Judi Online, Menteri Budi Arie Sarankan Empat Langkah,” Komdigi, 2024. https://www.komdigi.go.id/berita/pengumuman/detail/hindari-jerat-judi-online-menteri-budi-arie-sarankan-empat-langkah (accessed Oct. 04, 2024).

A. Rachman, “PPATK: Perputaran Uang Judi Online Rp 327 Triliun di 2023,” CNBC Indonesia, 2024. https://www.cnbcindonesia.com/news/20240112090558-4-505064/ppatk-perputaran-uang-judi-online-rp-327-triliun-di-2023 (accessed Jan. 12, 2024).

D. Savitri, “RI Jadi Negara dengan Pemain Judi Online Terbanyak, Ini Penyebabnya Kata Dosen UI,” Detik, 2024. https://www.detik.com/edu/edutainment/d-7470624/ri-jadi-negara-dengan-pemain-judi-online-terbanyak-ini-penyebabnya-kata-dosen-ui.

B. H. K. Kominfo, “Menkominfo Budi Arie Gas Pol Basmi Judi Online,” Kominfo, 2024. https://www.komdigi.go.id/berita/pengumuman/detail/menkominfo-budi-arie-gas-pol-basmi-judi-online (accessed Jun. 14, 2024).

E. Benavides-Astudillo, W. Fuertes, S. Sanchez-Gordon, D. Nuñez-Agurto, and G. Rodríguez-Galán, “A Phishing-Attack-Detection Model Using Natural Language Processing and Deep Learning,” Appl. Sci., vol. 13, no. 9, 2023, doi: 10.3390/app13095275.

Y. Cheng, H. Jiang, Z. Zhang, Y. Du, and T. Chai, “Birds of a Feather Flock Together: Generating Pornographic and Gambling Domain Names Based on Character Composition Similarity,” Wirel. Commun. Mob. Comput., vol. 2022, pp. 1–17, 2022, doi: 10.1155/2022/4408987.

L. Jiayin, Y. Jie, N. Bowei, Z. Chengchen, and H. Haichen, “Capture Methods of Gambling Related Illegal Websites in Massive Websites,” J. Data Acquis. Process., vol. 36, no. 5, pp. 1050–1061, 2021.

C. Wang, M. Zhang, F. Shi, P. Xue, and Y. Li, “A Hybrid Multimodal Data Fusion-Based Method for Identifying Gambling Websites,” Electron., vol. 11, no. 16, 2022, doi: 10.3390/electronics11162489.

A. Basit, M. Zafar, X. Liu, A. R. Javed, Z. Jalil, and K. Kifayat, “A comprehensive survey of AI-enabled phishing attacks detection techniques,” Telecommun. Syst., vol. 76, no. 1, pp. 139–154, 2021, doi: 10.1007/s11235-020-00733-2.

M. Min, J. J. Lee, and K. Lee, “Detecting Illegal Online Gambling (IOG) Services in the Mobile Environment,” Secur. Commun. Networks, vol. 2022, pp. 1–12, 2022, doi: 10.1155/2022/3286623.

M. O. Raza et al., “Reading Between the Lines: Machine Learning Ensemble and Deep Learning for Implied Threat Detection in Textual Data,” Int. J. Comput. Intell. Syst., vol. 17, no. 1, pp. 1–17, 2024, doi: 10.1007/s44196-024-00580-y.

R. Nisa, S. Amriza, and D. Supriyadi, “Komparasi Metode Machine Learning dan Deep Learning untuk Deteksi Emosi pada Text di Sosial Media,” JUPITER, vol. 13, no. 2, pp. 130–139, 2021.

R. A. Y and K. M. L, “Perbandingan Algoritma Cnn Dan Svm Untuk Analisis Sentimen Mengenai Kenaikan Harga Bahan Bakar Minyak,” eProceedings Eng., vol. 10, no. 6, pp. 5418–5422, 2023.

P. M. Aryanto and R. Mardhiyyah, “Analisis Sentimen Terhadap Review Google Maps Jogja City Mall Menggunakan Algoritma Support Vector Machine,” J. Comput. Syst. Informatics, vol. 6, no. 1, pp. 25–35, 2024, doi: 10.47065/josyc.v6i1.6049.

D. Adelia, W. Astuti, and K. M. Lhaksmana, “Election Hoax Detection on X using CNN with TF-RF and TF-IDF Weighting Features,” J. Comput. Syst. Informatics, vol. 5, no. 4, pp. 912–920, 2024, doi: 10.47065/josyc.v5i4.5778.

A. D. Cahyani, A. K. Ramdani, and Y. Sibaroni, “Hoax Detection of Covid-19 News on Social Media using Convolutional Neural Network (CNN) and Support Vector Machine (SVM),” Int. J. Inf. Commun. Technol., vol. 9, no. 2, pp. 177–185, 2023, doi: 10.21108/ijoict.v9i2.872.

E. Prasetyaningrum, S. Rijal, A. Purwanto, and A. Aziz, “Sentiment Analysis of Rice Price Increase on Facebook Using Naïve Bayes Algorithm,” J. Comput. Sci. Inf. Technol. ( CoSciTech ), vol. 5, no. 2, pp. 381–390, 2024, [Online]. Available: https://ejurnal.umri.ac.id/index.php/coscitech/article/view/5161/2439.

T. Wongvorachan, S. He, and O. Bulut, “A Comparison of Undersampling, Oversampling, and SMOTE Methods for Dealing with Imbalanced Classification in Educational Data Mining,” Inf., vol. 14, no. 54, 2023, doi: 10.3390/info14010054.

R. Nurlaely, S. D. Sartika, Kamdan, and I. L. Kharisma, “Analisis Sentimen Twitter Terhadap Cyberbullying Menggunakan Metode Support Vector Machine (SVM),” J. Comput. Sci. Inf. Technol., vol. 4, no. 2, pp. 376–384, 2023, [Online]. Available: http://ejurnal.umri.ac.id/index.php/coscitech/indexhttps://doi.org/10.37859/coscitech.v4i2.5161.

R. Arifiandy and H. Fahmi, “Perbandingan Vektorisasi Deteksi Spam Email Menggunakan Bag of Word, TF IDF, dan Word2Vec pada Multinomial Naïve Bayes,” Syntax J. Inform., vol. 13, no. 01, pp. 1–14, 2024, [Online]. Available: https://upgradeojs3.vpsrifqi.com/index.php/syntax/article/download/11254/4585.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Analisis Perbandingan Algoritma SVM dan CNN dalam Mendeteksi Website Judi Online Berdasarkan Konten Teks

Dimensions Badge

ARTICLE HISTORY

Published: 2025-06-06

Abstract View: 28 times
PDF Download: 22 times

How to Cite

Simanjuntak, N., & Muhammad, A. H. (2025). Analisis Perbandingan Algoritma SVM dan CNN dalam Mendeteksi Website Judi Online Berdasarkan Konten Teks. Bulletin of Computer Science Research, 5(4), 361-371. https://doi.org/10.47065/bulletincsr.v5i4.586

Issue

Section

Articles