Bird and Drone Image Classification Using ResNet CNN: A Deep Learning Approach for Aerial Surveillance


Authors

  • Abdullah Ahmad STIKOM Tunas Bangsa, Pematangsiantar, Indonesia
  • Anjar Wanto STIKOM Tunas Bangsa, Pematangsiantar, Indonesia
  • Syed Muhammad Adnan University of Milan, Milan, Italy

DOI:

https://doi.org/10.47065/bulletincsr.v5i4.545

Keywords:

Image Classification; CNN; ResNet; Bird; Drone

Abstract

Accurate classification of bird and drone images is crucial in supporting aerial surveillance and security systems, particularly to distinguish between natural objects such as birds and man-made objects such as drones. Manual classification methods have limitations in terms of speed and accuracy, thus necessitating a more efficient and reliable technology-based approach. This study aims to implement a ResNet-50 based Convolutional Neural Network (CNN) architecture to automatically classify bird and drone images. The dataset used was obtained from the Kaggle platform and consists of two classes: Bird and Drone, with a total of 22,407 images. The data was split into training (17,323 images), testing (844 images), and validation (1,740 images). All images underwent preprocessing and augmentation steps to enhance data quality and model training performance. The model was developed using the ResNet-50 architecture, which is well-regarded for handling complex image classification tasks. Evaluation results show that the model achieved an accuracy of 92%. For the Bird class, a precision of 0.83 and a recall of 0.99 were obtained, while for the Drone class, precision reached 0.99 and recall was 0.86. The average F1-score of 0.92 indicates that the model delivers balanced and reliable performance in the binary image classification task.

Downloads

Download data is not yet available.

References

P. Velusamy, S. Rajendran, R. K. Mahendran, S. Naseer, M. Shafiq, and J. Choi, “Unmanned Aerial Vehicles (UAV) in Precision Agriculture: Applications and Challenges,” Energies, vol. 15, no. 1, p. 217, 2022, doi: 10.3390/en15010217.

J. del Cerro, C. C. Ulloa, A. Barrientos, and J. de León Rivas, “Unmanned aerial vehicles in agriculture: A survey,” Agronomy, vol. 11, no. 2, 2021, doi: 10.3390/agronomy11020203.

D. Olson and J. Anderson, “Review on unmanned aerial vehicles, remote sensors, imagery processing, and their applications in agriculture,” Agron. J., vol. 113, no. 2, pp. 971–992, 2021, doi: 10.1002/agj2.20595.

M. F. F. Rahman, S. Fan, Y. Zhang, and L. Chen, “A comparative study on application of unmanned aerial vehicle systems in agriculture,” Agric., vol. 11, no. 1, pp. 1–26, 2021, doi: 10.3390/agriculture11010022.

S. A. H. Mohsan, M. A. Khan, F. Noor, I. Ullah, and M. H. Alsharif, “Towards the Unmanned Aerial Vehicles (UAVs): A Comprehensive Review,” Drones, vol. 6, no. 6, 2022, doi: 10.3390/drones6060147.

Ö. Ö. Kanat, “The Significance of Unmanned Aerial Vehicles (UAVs) in Strategic Contexts,” Anadolu Strat. Derg., pp. 75–87, 2023, [Online]. Available: https://www.researchgate.net/publication/376894479

L. Criollo, C. Mena-arciniega, and S. Xing, “CLASSIFICATION, MILITARY APPLICATIONS, AND OPPORTUNITIES OF UNMANNED AERIAL VEHICLES,” vilnus Tech, vol. 28, no. 2, pp. 115–127, 2024, doi: https://doi.org/10.3846/aviation.2024.21672.

M. Ghamari, P. Rangel, M. Mehrubeoglu, G. S. Tewolde, and R. Simon Sherratt, “Unmanned Aerial Vehicle Communications for Civil Applications: A Review,” IEEE Access, vol. 10, no. September, pp. 102492–102531, 2022, doi: 10.1109/ACCESS.2022.3208571.

M. Ayamga, S. Akaba, and A. A. Nyaaba, “Multifaceted applicability of drones: A review,” Technol. Forecast. Soc. Change, vol. 167, no. February, 2021, doi: 10.1016/j.techfore.2021.120677.

G. E. M. Abro, S. A. B. M. Zulkifli, R. J. Masood, V. S. Asirvadam, and A. Laouti, “Comprehensive Review of UAV Detection, Security, and Communication Advancements to Prevent Threats,” Drones, vol. 6, no. 10, 2022, doi: 10.3390/drones6100284.

J. Jordan, “The future of unmanned combat aerial vehicles: An analysis using the Three Horizons framework,” Futures, vol. 134, no. April, 2021, doi: 10.1016/j.futures.2021.102848.

A. Fascista, “Toward Integrated Large-Scale Environmental Monitoring Using WSN/UAV/Crowdsensing: A Review of Applications, Signal Processing, and Future Perspectives,” Sensors (Switzerland), vol. 22, no. 5, 2022, doi: https://doi.org/10.3390/s22051824.

N. S. Labib, M. R. Brust, G. Danoy, and P. Bouvry, “The Rise of Drones in Internet of Things: A Survey on the Evolution, Prospects and Challenges of Unmanned Aerial Vehicles,” IEEE Access, vol. 9, pp. 115466–115487, 2021, doi: 10.1109/ACCESS.2021.3104963.

A. Rejeb, K. Rejeb, S. Simske, and H. Treiblmaier, “Humanitarian Drones: A Review and Research Agenda,” Internet of Things (Netherlands), vol. 16, no. May, 2021, doi: 10.1016/j.iot.2021.100434.

D. Askerbekov, J. A. Garza-Reyes, R. Roy Ghatak, R. Joshi, J. Kandasamy, and D. Luiz de Mattos Nascimento, “Embracing drones and the Internet of drones systems in manufacturing – An exploration of obstacles,” Technol. Soc., vol. 78, no. June, p. 102648, 2024, doi: 10.1016/j.techsoc.2024.102648.

A. A. Laghari, A. K. Jumani, R. A. Laghari, H. Li, S. Karim, and A. A. Khan, “Unmanned aerial vehicles advances in object detection and communication security review,” Cogn. Robot., vol. 4, no. July, pp. 128–141, 2024, doi: 10.1016/j.cogr.2024.07.002.

M. Y. Arafat, M. M. Alam, and S. Moh, “Vision-Based Navigation Techniques for Unmanned Aerial Vehicles: Review and Challenges,” Drones, vol. 7, no. 2, 2023, doi: 10.3390/drones7020089.

Z. Liu, P. An, Y. Yang, S. Qiu, Q. Liu, and X. Xu, “Vision-Based Drone Detection in Complex Environments: A Survey,” Drones, vol. 8, no. 11, pp. 1–27, 2024, doi: 10.3390/drones8110643.

N. Millner, A. M. Cunliffe, M. Mulero-Pázmány, B. Newport, C. Sandbrook, and S. Wich, “Exploring the opportunities and risks of aerial monitoring for biodiversity conservation,” Glob. Soc. Challenges J., vol. 2, no. July 2021, pp. 2–23, 2023, doi: 10.1332/tiok6806.

U. Seidaliyeva, L. Ilipbayeva, K. Taissariyeva, N. Smailov, and E. T. Matson, “Advances and Challenges in Drone Detection and Classification Techniques: A State-of-the-Art Review,” Sensors, vol. 24, no. 1, pp. 1–31, 2024, doi: 10.3390/s24010125.

A. Gholami, “Exploring drone classifications and applications: a review,” Int. J. Eng. Geosci., vol. 9, no. 3, pp. 418–442, 2024, doi: 10.26833/ijeg.1428724.

R. Perz, “the Multidimensional Threats of Unmanned Aerial Systems: Exploring Biomechanical, Technical, Operational, and Legal Solutions for Ensuring Safety and Security,” Arch. Transp., vol. 69, no. 1, pp. 91–111, 2024, doi: 10.61089/aot2024.h7j32562.

A. Alotaibi, C. Chatwin, and P. Birch, “Ubiquitous Unmanned Aerial Vehicles (UAVs): A Comprehensive Review,” Shanlax Int. J. Arts, Sci. Humanit., vol. 11, no. 2, pp. 62–90, 2023.

M. Khalid, M. Namian, and C. Massarra, “The Dark Side of the Drones: A Review of Emerging Safety Implications in Construction,” ASC Conference, vol. 2, pp. 18–7, 2021, doi: 10.29007/x3vt.

C. R. Demmer, S. Demmer, and T. McIntyre, “Drones as a tool to study and monitor endangered Grey Crowned Cranes (Balearica regulorum): Behavioural responses and recommended guidelines,” Ecol. Evol., vol. 14, no. 2, pp. 1–14, 2024, doi: 10.1002/ece3.10990.

D. Gradolewski, D. Dziak, D. Kaniecki, A. Jaworski, M. Skakuj, and W. J. Kulesza, “A runway safety system based on vertically oriented stereovision,” Sensors, vol. 21, no. 4, pp. 1–25, 2021, doi: 10.3390/s21041464.

A. M. Wilson, K. S. Boyle, J. L. Gilmore, C. J. Kiefer, and M. F. Walker, “Species-specific responses of bird song output in the presence of drones,” Drones, vol. 6, no. 1, 2022, doi: 10.3390/drones6010001.

A. E. Öztürk and E. Erçelebi, “Real uav-bird image classification using cnn with a synthetic dataset,” Appl. Sci., vol. 11, no. 9, 2021, doi: 10.3390/app11093863.

H. J. Al Dawasari, M. Bilal, M. Moinuddin, K. Arshad, and K. Assaleh, “Pre-trained Deep Learning Networks for Advanced Visible Imagery Drone Detection and Recognition,” Proc. - 2023 15th IEEE Int. Conf. Comput. Intell. Commun. Networks, CICN 2023, pp. 316–320, 2023, doi: 10.1109/CICN59264.2023.10402291.

S. Muhammad Saqib et al., “MobVGG: Ensemble technique for birds and drones prediction,” Heliyon, vol. 10, no. 21, 2024, doi: 10.1016/j.heliyon.2024.e39537.

M. Tripathi, “Analysis of Convolutional Neural Network based Image Classification Techniques,” J. Innov. Image Process., vol. 3, no. 2, pp. 100–117, 2021, doi: 10.36548/jiip.2021.2.003.

P. Aggarwal, N. K. Mishra, B. Fatimah, P. Singh, A. Gupta, and S. D. Joshi, “COVID-19 image classification using deep learning: Advances, challenges and opportunities,” Comput. Biol. Med., vol. 144, no. November 2021, 2022, doi: 10.1016/j.compbiomed.2022.105350.

A. E. Ilesanmi and T. O. Ilesanmi, “Methods for image denoising using convolutional neural network: a review,” Complex Intell. Syst., vol. 7, no. 5, pp. 2179–2198, 2021, doi: 10.1007/s40747-021-00428-4.

G. R. Kumar, J. Jeyasudha, G. Ravi, T. Jagadesh, and G. K. Madhura, “Wireless Capsule Endoscopy Bleeding Images Classification using CNN Based Model,” 2023 Int. Conf. Evol. Algorithms Soft Comput. Tech. EASCT 2023, pp. 33675–33688, 2023, doi: 10.1109/EASCT59475.2023.10393338.

A. Wanto, Y. Yuhandri, and O. Okfalisa, “RetMobileNet: A New Deep Learning Approach for Multi-Class Eye Disease Identification,” Rev. d’Intelligence Artif., vol. 38, no. 4, pp. 1055–1067, 2024, doi: 10.18280/ria.380401.

M. Shafiq and Z. Gu, “Deep Residual Learning for Image Recognition: A Survey,” Appl. Sci., vol. 12, no. 18, pp. 1–43, 2022, doi: 10.3390/app12188972.

M. M. Taye, “Theoretical Understanding of Convolutional Neural Network: Concepts, Architectures, Applications, Future Directions,” Computation, vol. 11, no. 3, 2023, doi: 10.3390/computation11030052.

X. Pan, Z. Luo, and L. Zhou, “Comprehensive Survey of State-of-the-Art Convolutional Neural Network Architectures and Their Applications in Image Classification,” Innov. Appl. Eng. Technol., no. February 2022, pp. 1–16, 2022, doi: 10.62836/iaet.v1i1.1006.

M. A. Rostami, B. Balmaki, L. A. Dyer, J. M. Allen, M. F. Sallam, and F. Frontalini, “Efficient pollen grain classification using pre-trained Convolutional Neural Networks: a comprehensive study,” J. Big Data, vol. 10, no. 1, 2023, doi: 10.1186/s40537-023-00815-3.

X. Renjun, Y. Junliang, W. Yi, and S. Mengcheng, “Fault Detection Method Based on Improved Faster R-CNN: Take ResNet-50 as an Example,” Geofluids, vol. 2022, 2022, doi: 10.1155/2022/7812410.

T. Chen, H. Qin, X. Li, W. Wan, and W. Yan, “A Non-Intrusive Load Monitoring Method Based on Feature Fusion and SE-ResNet,” Electron., vol. 12, no. 8, 2023, doi: 10.3390/electronics12081909.

Y. Y. Zheng, H. X. Huang, and J. M. Chen, “Comparative analysis of various models for image classification on Cifar-100 dataset,” J. Phys. Conf. Ser., vol. 2711, no. 1, 2024, doi: 10.1088/1742-6596/2711/1/012015.

P. Tchatchoua, G. Graton, M. Ouladsine, and J. F. Christaud, “Application of 1D ResNet for Multivariate Fault Detection on Semiconductor Manufacturing Equipment †,” Sensors, vol. 23, no. 22, pp. 1–19, 2023, doi: 10.3390/s23229099.

K. K. Patro, J. P. Allam, M. Hammad, R. Tadeusiewicz, and P. P?awiak, “SCovNet: A skip connection-based feature union deep learning technique with statistical approach analysis for the detection of COVID-19,” Biocybern. Biomed. Eng., vol. 43, no. 1, pp. 352–368, 2023, doi: 10.1016/j.bbe.2023.01.005.

D. Sarwinda, R. H. Paradisa, A. Bustamam, and P. Anggia, “Deep Learning in Image Classification using Residual Network (ResNet) Variants for Detection of Colorectal Cancer,” Procedia Comput. Sci., vol. 179, no. 2019, pp. 423–431, 2021, doi: 10.1016/j.procs.2021.01.025.

L. H. Shehab, O. M. Fahmy, S. M. Gasser, and M. S. El-Mahallawy, “An efficient brain tumor image segmentation based on deep residual networks (ResNets),” J. King Saud Univ. - Eng. Sci., vol. 33, no. 6, pp. 404–412, 2021, doi: 10.1016/j.jksues.2020.06.001.

F. Li et al., “Mask DINO: Towards A Unified Transformer-based Framework for Object Detection and Segmentation,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 2023-June, pp. 3041–3050, 2023, doi: 10.1109/CVPR52729.2023.00297.

D. Liu, Z. Wang, and A. Liang, “MiM-UNet: An efficient building image segmentation network integrating state space models,” Alexandria Eng. J., vol. 120, no. December 2024, pp. 648–656, 2025, doi: 10.1016/j.aej.2025.02.035.

Y. Yu et al., “Techniques and Challenges of Image Segmentation: A Review,” Electron., vol. 12, no. 5, 2023, doi: 10.3390/electronics12051199.

S. A. Hasanah, A. A. Pravitasari, A. S. Abdullah, I. N. Yulita, and M. H. Asnawi, “A Deep Learning Review of ResNet Architecture for Lung Disease Identification in CXR Image,” Appl. Sci., vol. 13, no. 24, 2023, doi: 10.3390/app132413111.

W. Wu, L. Huo, G. Yang, X. Liu, and H. Li, “Research into the Application of ResNet in Soil: A Review,” Agric., vol. 15, no. 6, 2025, doi: 10.3390/agriculture15060661.

S. K. Mathivanan, S. Sonaimuthu, S. Murugesan, H. Rajadurai, B. D. Shivahare, and M. A. Shah, “Employing deep learning and transfer learning for accurate brain tumor detection,” Sci. Rep., vol. 14, no. 1, pp. 1–15, 2024, doi: 10.1038/s41598-024-57970-7.

J. Isohanni, “Customised ResNet architecture for subtle color classification,” Int. J. Comput. Appl., 2025, doi: 10.1080/1206212X.2025.2465727.

S. Vidivelli, P. Padmakumari, C. Parthiban, A. DharunBalaji, R. Manikandan, and A. H. Gandomi, “Optimising deep learning models for ophthalmological disorder classification,” Sci. Rep., vol. 15, no. 1, p. 3115, 2025, doi: 10.1038/s41598-024-75867-3.

R. Kundu, P. K. Singh, S. Mirjalili, and R. Sarkar, “COVID-19 detection from lung CT-Scans using a fuzzy integral-based CNN ensemble,” Comput. Biol. Med., vol. 138, no. September, pp. 1–14, 2021, doi: 10.1016/j.compbiomed.2021.104895.

Q. Zhang, K. Zhang, K. Pan, and W. Huang, “Image defect classification of surface mount technology welding based on the improved ResNet model,” J. Eng. Res., vol. 12, no. 2, pp. 154–162, 2024, doi: 10.1016/j.jer.2024.02.007.

A. Manna, N. Upasani, S. Jadhav, R. Mane, R. Chaudhari, and V. Chatre, “Bird Image Classification using Convolutional Neural Network Transfer Learning Architectures,” Int. J. Adv. Comput. Sci. Appl., vol. 14, no. 3, pp. 854–864, 2023, doi: 10.14569/IJACSA.2023.0140397.

R. Maulana, R. Dwi, Z. Putri, S. Fitriani, M. Sihaloho, and S. Mulyana, “Implementasi Algoritma Convolutional Neural Network Dalam Mengklasifikasi Jenis Burung,” J. Creat. Student Res., vol. 1, no. 6, pp. 221–231, 2023, [Online]. Available: https://doi.org/10.55606/jcsrpolitama.v1i6.2966

R. M. Narayanan, B. Tsang, and R. Bharadwaj, “Classification and Discrimination of Birds and Small Drones Using Radar Micro-Doppler Spectrogram Images †,” Signals, vol. 4, no. 2, pp. 337–358, 2023, doi: 10.3390/signals4020018.

A. Coluccia et al., “Drone vs. Bird detection: Deep learning algorithms and results from a grand challenge,” Sensors, vol. 21, no. 8, pp. 1–27, 2021, doi: 10.3390/s21082824.

E. Seifert et al., “Influence of drone altitude, image overlap, and optical sensor resolution on multi-view reconstruction of forest images,” Remote Sens., vol. 11, no. 10, 2019, doi: 10.3390/rs11101252.

A. Whitworth, C. Pinto, J. Ortiz, E. Flatt, and M. Silman, “Flight speed and time of day heavily influence rainforest canopy wildlife counts from drone-mounted thermal camera surveys,” Biodivers. Conserv., vol. 31, no. 13–14, pp. 3179–3195, 2022, doi: 10.1007/s10531-022-02483-w.

H. Alaeddine and M. Jihene, “Deep Residual Network in Network,” Comput. Intell. Neurosci., vol. 2021, pp. 1–9, 2021, doi: 10.1155/2021/6659083.

S. Mekruksavanich, A. Jitpattanakul, K. Sitthithakerngkiet, P. Youplao, and P. Yupapin, “ResNet-SE: Channel Attention-Based Deep Residual Network for Complex Activity Recognition Using Wrist-Worn Wearable Sensors,” IEEE Access, vol. 10, pp. 51142–51154, 2022, doi: 10.1109/ACCESS.2022.3174124.

J. Man and G. Sun, “A Residual Learning-Based Network Intrusion Detection System,” Secur. Commun. Networks, vol. 2021, 2021, doi: 10.1155/2021/5593435.

M. Eser, M. Bilgin, E. T. Yasin, and M. Koklu, “Using pretrained models in ensemble learning for date fruits multiclass classification,” J. Food Sci., vol. 90, no. March, p. e70136, 2025, doi: 10.1111/1750-3841.70136.

C. Cheng and G. T. Zhang, “Deep learning method based on physics informed neural network with Resnet block for solving fluid flow problems,” Water (Switzerland), vol. 13, no. 4, pp. 1–17, 2021, doi: 10.3390/w13040423.

S. Showkat and S. Qureshi, “Chemometrics and Intelligent Laboratory Systems Ef fi cacy of Transfer Learning-based ResNet models in Chest X-ray image classi fi cation for detecting COVID-19 Pneumonia,” Chemom. Intell. Lab. Syst., vol. 224, no. March, p. 104534, 2022, [Online]. Available: https://doi.org/10.1016/j.chemolab.2022.104534

A. Younis et al., “Abnormal Brain Tumors Classification Using ResNet50 and Its Comprehensive Evaluation,” IEEE Access, vol. 12, no. June, pp. 78843–78853, 2024, doi: 10.1109/ACCESS.2024.3403902.

A. Heikal, A. El-Ghamry, S. Elmougy, and M. Z. Rashad, “Fine tuning deep learning models for breast tumor classification,” Sci. Rep., vol. 14, no. 1, pp. 1–26, 2024, doi: 10.1038/s41598-024-60245-w.

K. Kansal, T. B. Chandra, and A. Singh, “ResNet-50 vs. EfficientNet-B0: Multi-Centric Classification of Various Lung Abnormalities Using Deep Learning ‘session id: ICMLDsE.004,’” Procedia Comput. Sci., vol. 235, pp. 70–80, 2024, doi: 10.1016/j.procs.2024.04.007.

R. Garg, V. G. D. Rayudu, and R. Singh, “ScienceDirect ScienceDirect Urban Land-Use Mapping and Classification using Deep Convolutional Neural Network with Multispectral Drone Imagery,” 2025.

L. Malihi and G. Heidemann, “Efficient and Controllable Model Compression through Sequential Knowledge Distillation and Pruning,” Big Data Cogn. Comput., vol. 7, no. 3, 2023, doi: 10.3390/bdcc7030154.

M. Zhou et al., “Improving animal monitoring using small unmanned aircraft systems (sUAS) and deep learning networks,” Sensors, vol. 21, no. 17, pp. 1–13, 2021, doi: 10.3390/s21175697.

H. Rakshit and P. Bagheri Zadeh, “A Novel Approach to Detect Drones Using Deep Convolutional Neural Network Architecture,” Sensors, vol. 24, no. 14, 2024, doi: 10.3390/s24144550.

J. Brown, Z. Gharineiat, and N. Raj, “CNN Based Image Classification of Malicious UAVs,” Appl. Sci., vol. 13, no. 1, 2023, doi: 10.3390/app13010240.

C. W. Lin, S. Hong, M. Lin, X. Huang, and J. Liu, “Bird posture recognition based on target keypoints estimation in dual-task convolutional neural networks,” Ecol. Indic., vol. 135, 2022, doi: 10.1016/j.ecolind.2021.108506.

S. Kim, M. Chae, J. Lee, and H. Lee, “Advanced Pharmaceutical Recognition System Based on Deep Learning for Mobile Medication Identification,” 2025.

M. Mazni, A. R. Husain, M. I. Shapiai, I. S. Ibrahim, D. W. Anggara, and R. Zulkifli, “An investigation into real-time surface crack classification and measurement for structural health monitoring using transfer learning convolutional neural networks and Otsu method,” Alexandria Eng. J., vol. 92, no. October 2023, pp. 310–320, 2024, doi: 10.1016/j.aej.2024.02.052.

J. T. Sliwinski, M. Mandl, and H. M. Stoll, “Machine learning application to layer counting in speleothems,” Comput. Geosci., vol. 171, no. December 2022, 2023, doi: 10.1016/j.cageo.2022.105287.

W. Zaman, M. F. Siddique, S. Ullah, F. Saleem, and J. M. Kim, “Hybrid Deep Learning Model for Fault Diagnosis in Centrifugal Pumps: A Comparative Study of VGG16, ResNet50, and Wavelet Coherence Analysis,” Machines, vol. 12, no. 12, 2024, doi: 10.3390/machines12120905.

M. Krichen, “Convolutional Neural Networks: A Survey,” Computers, vol. 12, no. 8, pp. 1–41, 2023, doi: 10.3390/computers12080151.

Kaggle, “Bird vs Drone,” Distinguishing the Skies: A Dataset for Drone vs Bird Classification.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Bird and Drone Image Classification Using ResNet CNN: A Deep Learning Approach for Aerial Surveillance

Dimensions Badge

ARTICLE HISTORY

Published: 2025-06-06

Abstract View: 48 times
PDF Download: 19 times

How to Cite

Ahmad, A., Anjar Wanto, & Adnan, S. M. (2025). Bird and Drone Image Classification Using ResNet CNN: A Deep Learning Approach for Aerial Surveillance. Bulletin of Computer Science Research, 5(4), 372-381. https://doi.org/10.47065/bulletincsr.v5i4.545

Issue

Section

Articles