Prediksi Penjualan Barang Menggunakan Metode K-Means dan Regresi Linear


Authors

  • Henry Adam Universitas Buana Perjuangan Karawang, Karawang, Indonesia
  • Tukino Universitas Buana Perjuangan Karawang, Karawang, Indonesia
  • Elfina Novalia Universitas Buana Perjuangan Karawang, Karawang, Indonesia
  • April Lia Hananto Universitas Buana Perjuangan Karawang, Karawang, Indonesia

DOI:

https://doi.org/10.47065/bulletincsr.v5i4.541

Keywords:

Sales Prediction; K-Means; Linear Regression; Data Mining; Model Evaluation

Abstract

Sales data analysis plays an important role in supporting business decision making, especially to optimise stock management and improve operational efficiency. the main problem faced by Vapestore XYZ in Karawang is the difficulty in accurately predicting the number of product sales, so there is often an imbalance between inventory and market demand. This can cause losses due to overstocks or shortages of goods. Currently, the estimation of stock requirements still relies on intuition and personal experience, without the support of objective data analysis. This research aims to build a sales prediction model by combining the K-Means method for product clustering and Linear Regression for sales quantity prediction. Sales data is taken directly from the store POS application, then goes through the stages of cleaning, labelling, and clustering into three groups, namely ‘Less Sold’, “Sold”, and ‘Very Sold’. Sales prediction is performed using Linear Regression by utilising the clustering results and time variables as inputs. Model performance evaluation is performed using error metrics, namely Mean Absolute Error (MAE), Mean Squared Error (MSE), and Root Mean Squared Error (RMSE). Based on the test results, the developed Linear Regression model obtained MAE of 3.20, MSE of 52.34, and RMSE of 7.23. These error values indicate that the model is able to provide sales estimates that are close enough to the actual data to be reliable in stock planning. Visualisation of the prediction results in the form of tables and heatmaps makes it easy to identify sales trends and compare performance between products. The findings of this study prove that the combination of K-Means and Linear Regression methods is effectively used to support stock decision making and marketing strategies in vape retail stores. Further development is recommended by enriching the dataset and exploring other prediction methods to improve model performance.

Downloads

Download data is not yet available.

References

R. Isnaen, P. Zaeni, and R. Renaldy, “IN-FEST 2024 Systematic Literature Review?: Penerapan dan Teknik Data Mining pada Sistem Pengambilan Keputusan Pemasaran di Perusahaan IN-FEST 2024,” Prosiding Seminar Nasional Informatika, vol. 2, pp. 578–584, 2024.

I. T, “Penerapan Data Mining Dalam Dunia Bisnis Menggunakan Metode Clustering.,” J. Intsitution Sharia Financ., vol. 2, pp. 40–53, 2019.

G. Gustientiedina, M. H. Adiya, and Y. Desnelita, “Penerapan Algoritma K-Means Untuk Clustering Data Obat-Obatan,” J. Nas. Teknol. dan Sist. Inf., vol. 5, no. 1, pp. 17–24, 2019, doi: 10.25077/teknosi.v5i1.2019.17-24.

F. Dikarya and S. Muharni, “Penerapan Algoritma K-Means Clustering Untuk Pengelompokan Universitas Terbaik Di Dunia,” J. Inform., vol. 22, no. 2, pp. 124–131, 2022, doi: 10.30873/ji.v22i2.3324.

C. Science, “Implementasi Algoritma K-Means untuk Mengetahui Minat Siswa SMA Terhadap Mata Pelajaran Teknologi Informasi dan Komunikasi,” Indonesian Journal of Machine Learning and Computer Science, vol. 5, no. 1, pp. 168–174, 2025, doi 10.57152/malcom.v5i1.1639

M. Djaka Permana, A. Lia Hananto, E. Novalia, B. Huda, and T. Paryono, “Klasterisasi Data Jamaah Umrah pada Tanurmutmainah Tour Menggunakan Algoritma K-Means,” J. KomtekInfo, vol. 10, no. 1, pp. 15–20, 2023, doi: 10.35134/komtekinfo.v10i1.332.

D. S. Annam, A. Hananto, F. Nurapriani, and T. Tukino, “Clustering User Sentiment Transportasi Online Gojek Dan Grab Dengan Metode K-Means,” J. Tika, vol. 8, no. 2, pp. 164–171, 2023, doi: 10.51179/tika.v8i2.2165.

A. H. Helyatin, N. Nadzirotul, F. Syarif, A. Khoiri, and M. Fauzen, “Perancangan Sistem Informasi Presensi Guru Berbasis Web,” JUSTIFY?: Jurnal Sistem Informasi, vol. 3, no. 1, pp. 21–29, 2024, doi: 10.35316/justify.v3i1.5565.

M. D. Kurniawan, B. Priyatna, and F. Nurapriani, “Implementasi Algoritma K-Means Untuk Klasterisasi Data Obat Puskesmas Kotabaru,” J. Sains Komput. Inform. (J-SAKTI, vol. 7, no. 2, pp. 882–890, 2023, DOI : http://dx.doi.org/10.30645/j-sakti.v7i2.693.

F. P. Azizah, S. S. Hilabi, and A. Hananto, “Perbandingan Algoritma K-Means dan Hierarchical Untuk Klasterisasi Data Kehadiran Karyawan,” Jutisi, vol. 14, no. 1, pp. 351–361, doi: http://dx.doi.org/10.35889/jutisi.v14i1.2644.

T. P. Sari, A. L. Hananto, E. Novalia, T. Tukino, and S. S. Hilabi, “Implementasi Algoritma K-Means dalam Analisis Klasterisasi Penyebaran Penyakit Hiv/Aids,” Infotek J. Inform. dan Teknol., vol. 6, no. 1, pp. 104–114, 2023, doi: 10.29408/jit.v6i1.7423.

W. W. Kristianto and C. Rudianto, “Penerapan Data Mining Pada Penjualan Produk Menggunakan Metode K-Means Clustering (Studi Kasus Toko Sepatu Kakikaki),” J. Pendidik. Teknol. Inf., no. 5, pp. 90–98, 2020.

M. Khaerudin, I. Zaenuddin, and Tukino, “Prediksi Barang Sering dan Jarang Terjual Dengan Menggunakan Algorithma K-Mean Clustering (Studi Kasus Toko Bina Mulia),” J. Inform. Inf. Secur., vol. 3, no. 1, pp. 1–12, 2022, doi: 10.31599/jiforty.v3i1.1229.

R. Nazar, “Implementasi Pemrograman Python Menggunakan Google Colab,” J. Inform. dan Komput. , vol. 15, no. 1, pp. 50–56, 2024.

R. A. A. Yanuar, “Sentimen Analisis Aplikasi Posaja Pada Google Playstore Untuk Peningkatan Pospay Superapp Menggunakan Support Vector Meachine” Jurnal Teknik Informatika, Vol. 16, No. 2, 1–7, 2024, [Online]. Available: https://ejurnal.ulbi.ac.id/index.php/informatika/article/view/3533

N. P. A. Widiari, I. M. A. D. Suarjaya, and D. P. Githa, “Teknik Data Cleaning Menggunakan Snowflake untuk Studi Kasus Objek Pariwisata di Bali,” J. Ilm. Merpati (Menara Penelit. Akad. Teknol. Informasi), vol. 8, no. 2, p. 137, 2020, doi: 10.24843/jim.2020.v08.i02.p07.

H. Firda et al., “Perbandingan Pelabelan Rating - based dan Inset Lexicon - based dalam Analisis Sentimen Menggunakan SVM ( Studi Kasus?: Ulasan Aplikasi GoBiz di Google Play Store ),” Jurnal Sistemasi vol. 14, no. 2, pp. 516–528, 2025 DOI : https://doi.org/10.32520/stmsi.v14i2.4795.

M. F. Fadhillah, A. Lovely, A. Suyoso, and I. Puspitasari, “Attributes Segmentasi Pelanggan dengan Algoritma Clustering Berdasarkan Atribut Recency , Frequency dan Monetary ( RFM ),” Indonesian Journal of Machine Learning and Computer Science vol. 5, no 1, pp. 48–56, 2025, DOI : https://doi.org/10.57152/malcom.v5i1.1491.

A. Anggrawan, H. Hairani, and N. Azmi, “Prediksi Penjualan Produk Unilever Menggunakan Metode Regresi Linear,” J. Bumigora Inf. Technol., vol. 4, no. 2, pp. 123–132, 2022, doi: 10.30812/bite.v4i2.2416.

K. Puteri and A. Silvanie, “Machine Learning untuk Model Prediksi Harga Sembako Dengan Metode Regresi Linear Berganda,” J. Nas. Inform., vol. 1, no. 2, pp. 82–94, 2020,.

Y. Aqsho Ramadhan, A. Faqih, and G. Dwilestari, “Prediksi Penjualan Handphone di Toko X menggunakan Algoritma Regresi Linear,” J. Inform. Terpadu, vol. 9, no. 1, pp. 40–44, 2023, doi: 10.54914/jit.v9i1.692.

N. R. Setyoningrum, P. J. Rahimma, S. T. Teknologi, I. Tanjungpinang, and K. Tanjungpinang, “Implementasi Algoritma Regresi Linear Dalam Sistem Prediksi Pendaftar Mahasiswa Baru Sekolah Tinggi Teknologi Indonesia Tanjungpinang,” Pros. Semin. Nas. Ilmu Sos. dan Teknol., no. 4, pp. 13–18, 2022, [Online]. Available: https://ejournal.upbatam.ac.id/index.php/prosiding/article/view/5200

T. Tukino and F. Fifi, “Penerapan Support Vector Machine Untuk Analisis Sentimen Pada Layanan Ojek Online,” J. Desain Dan Anal. Teknol., vol. 3, no. 2, pp. 104–113, 2024, doi: 10.58520/jddat.v3i2.59.

T. Tukino and B. Huda, “Penerapan Algoritma K-Means Untuk Mendukung Keputusan Dalam Pemilihan Tema Tugas Akhir Pada Prodi Sistem Informasi Universitas Buana Perjuangan Karawang.,” Techno Xplore J. Ilmu Komput. dan Teknol. Inf., vol. 4, no. 1, pp. 1–10, 2019, doi: 10.36805/technoxplore.v4i1.542.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Prediksi Penjualan Barang Menggunakan Metode K-Means dan Regresi Linear

Dimensions Badge

ARTICLE HISTORY

Published: 2025-06-02

Abstract View: 51 times
PDF Download: 62 times

How to Cite

Henry Adam, Tukino, Elfina Novalia, & Hananto, A. L. (2025). Prediksi Penjualan Barang Menggunakan Metode K-Means dan Regresi Linear. Bulletin of Computer Science Research, 5(4), 298-307. https://doi.org/10.47065/bulletincsr.v5i4.541

Issue

Section

Articles

Most read articles by the same author(s)