Peningkatan Performa Naive Bayes dengan Fitur Chi-Square pada Analisis Sentimen Komentar Pengguna Aplikasi Netflix


Authors

  • Pareza Alam Jusia Universitas Dinamika Bangsa, Kota Jambi, Indonesia
  • Riza Pahlevi Universitas Dinamika Bangsa, Kota Jambi, Indonesia
  • Daniel Sintong Pardamean Simanjuntak Universitas Dinamika Bangsa, Kota Jambi, Indonesia
  • Jasmir Universitas Dinamika Bangsa, Kota Jambi, Indonesia

DOI:

https://doi.org/10.47065/bulletincsr.v5i4.532

Keywords:

Sentiment Analysis; Naive Bayes; Chi-Square; Feature Extraction; Performance Improvement

Abstract

This study discusses sentiment analysis using the Naïve Bayes algorithm with Chi-Square. The purpose of this study is to determine the effect of Chi-Square feature selection on the performance of the Naïve Bayes algorithm in analyzing document sentiment. The research data was taken from Netflix Application user comments. Testing was carried out by analyzing document sentiment with and without Chi-Square feature selection. Furthermore, it was evaluated using the accuracy, precision, and recall methods. The results of this study are that the addition of CS features to NB significantly improves all evaluation metrics, especially recall and F1-score, indicating that additional features help improve the model's ability to understand data. The combination of NB + CS with a 70:30 split gives the best results, making it the optimal choice.

Downloads

Download data is not yet available.

References

F. Panjaitan et al., “Studi Komparatif Algoritma Machine Learning Pada Analisis Sentimen Media Sosial,” JATI (Jurnal Mhs. Tek. Inform., vol. 9, no. 2, pp. 3145–3152, 2025.

J. Jasmir, E. Rohaini, M. R. Pahlevi, D. Sintong, and P. Simanjuntak, “Word Embedding Feature for Improvement Machine Learning Performance in Sentiment Analysis Disney Plus Hotstar Comments,” J. Ilm. Tek. Elektro Komput. dan Inform., vol. 10, no. 2, pp. 290–301, 2024, doi: 10.26555/jiteki.v10i2.28799.

E. S. Alamoudi and N. S. Alghamdi, “Sentiment classification and aspect-based sentiment analysis on yelp reviews using deep learning and word embeddings,” J. Decis. Syst., vol. 30, no. 2–3, pp. 259–281, 2021, doi: 10.1080/12460125.2020.1864106.

I. A. Darmawan, M. F. Randy, I. Yunianto, M. M. Mutoffar, and M. T. P. Salis, “Penerapan Data Mining Menggunakan Algoritma Apriori Untuk Menentukan Pola Golongan Penyandang Masalah Kesejahteraan Sosial,” Sebatik, vol. 26, no. 1, pp. 223–230, 2022, doi: 10.46984/sebatik.v26i1.1622.

O. A. Alcántara Francia, M. Nunez-del-Prado, and H. Alatrista-Salas, “Survey of Text Mining Techniques Applied to Judicial Decisions Prediction,” Appl. Sci., vol. 12, no. 20, 2022, doi: 10.3390/app122010200.

J. Guerreiro and P. Rita, “How to predict explicit recommendations in online reviews using text mining and sentiment analysis,” J. Hosp. Tour. Manag., vol. 43, no. July, pp. 269–272, 2020, doi: 10.1016/j.jhtm.2019.07.001.

K. N. Reddy and D. B. I. Reddy, “Restaurant Review Classification Using Naives Bayes Model,” J. Univ. Shanghai Sci. Technol., vol. 23, no. 08, pp. 646–656, 2021, doi: 10.51201/jusst/21/08443.

A. Abdullah, S. Putri, and A. Alkadri, “Classification of Fetal Health Using the K-Nearest Neighbor Method and the Relieff Feature Selection Method,” J. Artif. Intell. Eng. Appl., vol. 4, no. 2, pp. 2–5, 2025.

V. Junita and F. A. Bachtiar, “Klasifikasi Aktivitas Manusia menggunakan Algoritme Decision Tree C4.5 dan Information Gain untuk Seleksi Fitur,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 3, no. 10, pp. 9426–9433, 2020, [Online]. Available: http://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/6446

H. A. R. Harpizon, R. Kurniawan, Iwan Iskandar, R. Salambue, E. Budianita, and F. Syafria, “Analisis Sentimen Komentar Di YouTube Tentang Ceramah Ustadz Abdul Somad Menggunakan Algoritma Naïve Bayes,” … Di YouTube …, vol. 5, no. 1, pp. 131–140, 2022.

E. Indrayuni, “Klasifikasi Text Mining Review Produk Kosmetik Untuk Teks Bahasa Indonesia Menggunakan Algoritma Naive Bayes,” J. Khatulistiwa Inform., vol. 7, no. 1, pp. 29–36, 2019, doi: 10.31294/jki.v7i1.1.

R. Sari, “Analisis Sentimen Review Restoran menggunakan Algoritma Naive Bayes berbasis Particle Swarm Optimization,” J. Inform., vol. 6, no. 1, pp. 23–28, 2019, doi: 10.31311/ji.v6i1.4695.

R. Azizah Arilya, Y. Azhar, and D. Rizki Chandranegara, “Sentiment Analysis on Work from Home Policy Using Naïve Bayes Method and Particle Swarm Optimization,” J. Ilm. Tek. Elektro Komput. dan Inform., vol. 7, no. 3, p. 433, 2021, doi: https://doi.org/10.26555/jiteki.v7i3.22080.

F. Septianingrum and A. S. Y. Irawan, “Metode Seleksi Fitur Untuk Klasifikasi Sentimen Menggunakan Algoritma Naive Bayes: Sebuah Literature Review,” J. Media Inform. Budidarma, vol. 5, no. 3, p. 799, 2021, doi: 10.30865/mib.v5i3.2983.

O. Irnawati and K. Solecha, “Analisis Sentimen Ulasan Aplikasi Flip Menggunakan Naïve Bayes dengan Seleksi Fitur PSO,” J. Ilm. Intech Inf. Technol. J. UMUS, vol. 4, no. 02, pp. 189–199, 2022, doi: 10.46772/intech.v4i02.868.

E. Jasmir, Jasmir; Rasywir, H. Yani, and A. Nugroho, “Comparison of word embedding features using deep learning in sentiment analysis,” TELKOMNIKA Telecommun. Comput. Electron. Control, vol. 23, no. 2, pp. 416–425, 2025, doi: 10.12928/TELKOMNIKA.v23i2.26223.

V. N. February, M. A. Daniel, S. Chong, L. Chong, and K. Wee, “Optimising Phishing Detection?: A Comparative Analysis of Machine Learning Methods with Feature Selection,” Journal of Informatics and Web Engineering, vol. 4, no. 1, 2025.

S. Bahassine, A. Madani, M. Al-Sarem, and M. Kissi, “Feature selection using an improved Chi-square for Arabic text classification,” J. King Saud Univ. - Comput. Inf. Sci., vol. 32, no. 2, pp. 225–231, 2020, doi: 10.1016/j.jksuci.2018.05.010.

M. B. Hamzah, “Classification of Movie Review Sentiment Analysis Using Chi-Square and Multinomial Naïve Bayes with Adaptive Boosting,” J. Adv. Inf. Syst. Technol., vol. 3, no. 1, pp. 67–74, 2021, doi: 10.15294/jaist.v3i1.49098.

A. Falasari and M. A. Muslim, “Optimize Naïve Bayes Classifier Using Chi Square and Term Frequency Inverse Document Frequency For Amazon Review Sentiment Analysis,” J. Soft Comput. Explor., vol. 3, no. 1, pp. 31–36, 2022, doi: 10.52465/joscex.v3i1.68.

N. Wijaya, “Evaluation of Naïve Bayes and Chi-Square performance for Classification of Occupancy House,” Int. J. Informatics Comput., vol. 1, no. 2, p. 46, 2020, doi: 10.35842/ijicom.v1i2.20.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Peningkatan Performa Naive Bayes dengan Fitur Chi-Square pada Analisis Sentimen Komentar Pengguna Aplikasi Netflix

Dimensions Badge

ARTICLE HISTORY

Published: 2025-06-26

Abstract View: 111 times
PDF Download: 73 times

How to Cite

Jusia, P. A., Pahlevi, R., Pardamean Simanjuntak, D. S., & Jasmir. (2025). Peningkatan Performa Naive Bayes dengan Fitur Chi-Square pada Analisis Sentimen Komentar Pengguna Aplikasi Netflix . Bulletin of Computer Science Research, 5(4), 614-621. https://doi.org/10.47065/bulletincsr.v5i4.532

Issue

Section

Articles