Klasifikasi Penyakit Jamur Pada Tanaman Tomat dengan Algoritma SVM
DOI:
https://doi.org/10.47065/bulletincsr.v5i4.515Keywords:
Early Detection; Artificial Intelligent; Plant Village; SVM; Plant Disease ClassificationAbstract
Diseases in tomato plants, such as mosaic virus and yellow leaf curl virus, can significantly reduce crop yields. Therefore, early detection based on artificial intelligence (AI) presents a strategic solution to improve the efficiency of plant disease identification. This study aims to develop and evaluate a classification model using Support Vector Machine (SVM) for the automatic and accurate detection of tomato leaf diseases. SVM is selected as the primary classification method due to its ability to handle high-dimensional data with better computational efficiency compared to Convolutional Neural Network (CNN) and Random Forest. The dataset used is the PlantVillage Tomato Leaf Dataset from Kaggle, consisting of 600 images categorized into three classes: healthy tomato leaves, leaves affected by mosaic virus, and leaves affected by yellow leaf curl virus. The research stages include data preprocessing such as image normalization, dataset splitting (80% training, 20% testing), and undersampling to address class imbalance. The SVM model is trained using various kernels and evaluated using accuracy, precision, recall, and F1-score metrics. The results show that the SVM model achieves an accuracy of 98.33%, demonstrating its effectiveness in detecting tomato plant diseases. Therefore, this model can be implemented in smart agriculture systems to enhance early disease detection and assist farmers in optimizing crop yields.
Downloads
References
P. Ramudingana et al., “Antagonistic potential of endophytic fungal isolates of tomato (Solanum lycopersicum L.) fruits against post-harvest disease-causing pathogens of tomatoes: An in vitro investigation,” Fungal Biol, vol. 128, no. 4, pp. 1847–1858, Jun. 2024, doi: 10.1016/j.funbio.2024.05.006.
A. O. Anim-Ayeko, C. Schillaci, and A. Lipani, “Automatic blight disease detection in potato (Solanum tuberosum L.) and tomato (Solanum lycopersicum, L. 1753) plants using deep learning,” Smart Agricultural Technology, vol. 4, Aug. 2023, doi: 10.1016/j.atech.2023.100178.
P. Rosyani, S. Saprudin, and R. Amalia, “Klasifikasi Citra Menggunakan Metode Random Forest dan Sequential Minimal Optimization (SMO),” Jurnal Sistem dan Teknologi Informasi (Justin), vol. 9, no. 2, p. 132, 2021, doi: 10.26418/justin.v9i2.44120.
A. Sanusi Mashuri and A. Sunyoto, “Klasifikasi Penyakit Pada Daun Cabai Menggunakan Arsitektur VGG16,” Journal homepage: Journal of Electrical Engineering and Computer (JEECOM), vol. 6, no. 2, 2024, doi: 10.33650/jeecom.v4i2.
Q. N. Azizah, “Klasifikasi Penyakit Daun Jagung Menggunakan Metode Convolutional Neural Network AlexNet,” sudo Jurnal Teknik Informatika, vol. 2, no. 1, pp. 28–33, Feb. 2023, doi: 10.56211/sudo.v2i1.227.
T. Diwan, G. Anirudh, and J. V. Tembhurne, “Object detection using YOLO: challenges, architectural successors, datasets and applications,” Multimed Tools Appl, vol. 82, no. 6, pp. 9243–9275, Mar. 2023, doi: 10.1007/s11042-022-13644-y.
S. Shrivastav, V. Jindal, and R. Eswarawaka, “A Fusion Method for Detection and Classification of Diseases in Tomato Plants Using Swarm-based Deep Learning,” International Journal of Experimental Research and Review, vol. 45, pp. 135–152, 2024, doi: 10.52756/ijerr.2024.v45spl.011.
M. A. I. Aquil and W. H. W. Ishak, “Evaluation of scratch and pre-trained convolutional neural networks for the classification of tomato plant diseases,” IAES International Journal of Artificial Intelligence, vol. 10, no. 2, pp. 467–475, Jun. 2021, doi: 10.11591/IJAI.V10.I2.PP467-475.
M. T. Rahman, S. D. Dipto, I. J. June, A. Momin, and M. R. Al Mamun, “Machine Learning-based Disease Classification in Tomato (Solanum lycopersicum) Plants,” Jurnal Keteknikan Pertanian Tropis dan Biosistem, vol. 12, no. 3, pp. 151–160, Dec. 2024, doi: 10.21776/ub.jkptb.2024.012.03.01.
N. Istiqomah and M. Murinto, “Klasifikasi Penyakit Tanaman Padi Berbasis Citra Daun Menggunakan Convolutional Neural Network (CNN),” JSTIE (Jurnal Sarjana Teknik Informatika) (E-Journal), vol. 12, no. 1, p. 18, Feb. 2024, doi: 10.12928/jstie.v12i1.27314.
R. C. Sigitta, R. H. Saputra, and F. Fathulloh, “Deteksi Penyakit Tomat melalui Citra Daun menggunakan Metode Convolutional Neural Network,” AVITEC, vol. 5, no. 1, p. 43, Feb. 2023, doi: 10.28989/avitec.v5i1.1404.
M. H. Zayd, M. W. Oktavian, D. G. T. Meranggi, J. A. Figo, and N. Yudistira, “Improvement of garbage classification using pretrained Convolutional Neural Network,” Teknologi, vol. 12, no. 1, pp. 1–8, May 2022, doi: 10.26594/teknologi.v0i0.2403.
Ü. Atila, M. Uçar, K. Akyol, and E. Uçar, “Plant leaf disease classification using EfficientNet deep learning model,” Ecol Inform, vol. 61, Mar. 2021, doi: 10.1016/j.ecoinf.2020.101182.
Fuad Mahrus Fathoni, “Klasifikasi Penyakit Daun Tomat Menggunakan Algoritma K-NN Berdasarkan Ekstraksi Fitur GLCM dan LBP,” Jurnal Teknik Informatika dan Teknologi Informasi, vol. 4, no. 1, pp. 39–50, Jan. 2024, doi: 10.55606/jutiti.v4i1.3417.
S. Tilki, H. B. Dogru, A. A. Hameed, A. Jamil, and J. Rasheed, “Gender Classification using Deep Learning Techniques,” Manchester Journal of Artificial Intelligence & Applied Sciences, vol. 2, no. May, 2021.
P. Rosyani, Mk. Susanna Dwi Yulianti Kusuma, and Mk. Santi Rahayu, “CONVOLUTIONAL NEURAL NETWORK MODELLING PADA KLASIFIKASI GENDER PENERBIT CV.EUREKA MEDIA AKSARA.”
Q. Aini, N. Lutfiani, H. Kusumah, and M. S. Zahran, “Deteksi dan Pengenalan Objek Dengan Model Machine Learning: Model Yolo,” CESS (Journal of Computer Engineering, System and Science), vol. 6, no. 2, p. 192, 2021, doi: 10.24114/cess.v6i2.25840.
Teti Desyani, M. Mahromi, F. A. Ramadhan, M. Alfiansyah, M. I. Maulana, and P. Rosyani, “Classification of Plant Leaf Diseases Using Convolutional Neural Networks,” International Journal of Integrative Sciences, vol. 4, no. 1, pp. 195–206, Feb. 2025, doi: 10.55927/ijis.v4i1.13478.
G. Henry, A. Panjaitan, and F. Simatupang, “KLIK: Kajian Ilmiah Informatika dan Komputer Pemodelan Klasifikasi Penyakit Daun Tanaman Tomat dengan Convolutional Neural Network Algorithm,” Media Online, vol. 4, no. 5, 2024, doi: 10.30865/klik.v4i5.1646.
S. Dwi, Y. Kusuma, H. Al Islami, and D. P. Rosyani, “Penerapan Naive Bayes Untuk Klasifikasi Penyakit Endokrin Pada Pasien Lansia,” vol. 5, no. 2, 2024, doi: 10.31284/j.kernel.2024.
I. H. Ikasari, R. Amalia, and P. Rosyani, “Segmentasi Citra Bunga Menggunakan Blob Analisis,” Building of Informatics, Technology and Science (BITS), vol. 3, no. 3, pp. 228–234, 2021, doi: 10.47065/bits.v3i3.1050.
N. P. A. Widiari, I. M. A. D. Suarjaya, and D. P. Githa, “Teknik Data Cleaning Menggunakan Snowflake untuk Studi Kasus Objek Pariwisata di Bali,” Jurnal Ilmiah Merpati (Menara Penelitian Akademika Teknologi Informasi), 2020, doi: 10.24843/jim.2020.v08.i02.p07.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Klasifikasi Penyakit Jamur Pada Tanaman Tomat dengan Algoritma SVM
ARTICLE HISTORY
How to Cite
Issue
Section
Copyright (c) 2025 Eka Sri Rahayu, Oktaviana Anugrah Ade Purnama, Hadi Zakaria, Perani Rosyani

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).