Deteksi dan Klasifikasi Kendaraan Berbasis Algoritma You Only Look Once (Yolov7)


Authors

  • Yusuf Kautsar Rohiman Universitar Mataram, Mataram, Indonesia
  • Bulkis Kanata Universitas Mataram, Mataram, Indonesia
  • L Ahmad S Irfan Akbar Universitas Mataram, Mataram, Indonesia

DOI:

https://doi.org/10.47065/bulletincsr.v5i3.509

Keywords:

YOLOv7; Vehicle Detection; Traffic Classification; Deep Learning; Google Colab; Kaggle Dataset; Object Detection

Abstract

The increasing traffic density in Indonesia highlights the need for an accurate vehicle detection system to support infrastructure planning. This study aims to implement the YOLOv7 algorithm for detecting and classifying various types of vehicles in traffic images. The method involves training the model using Google Colab on a Kaggle dataset consisting of 6,633 images, with a batch size of 1, 19 training epochs, and optimization using the Stochastic Gradient Descent (SGD) algorithm. The training results show that the model achieved a precision of 93.22%, recall of 90.64%, mAP@0.5 of 94.27%, and mAP@0.5:0.95 of 69.19%, with a total training time of 1 hours. In conclusion, the YOLOv7 algorithm is effective for vehicle detection and classification, although increasing the number of training epochs is recommended to further enhance model performance.

Downloads

Download data is not yet available.

References

D. Iskandar Mulyana and M. A. Rofik, “Implementasi Deteksi Real Time Klasifikasi Jenis Kendaraan Di Indonesia Menggunakan Metode YOLOV5,” J. Pendidik. Tambusai, vol. 6, no. 3, pp. 13971–13982, 2022, doi: 10.31004/jptam.v6i3.4825.

Nurhawanti, “SISTEM PENDETEKSI SEPEDA MOTOR PELANGGAR MARKA JALAN MENGGUNAKAN METODE CONVOLUTIONAL NEURAL NETWORKS (CNNs),” Galang Tanjung, vol. 2, no. 2504, pp. 1–9, 2019.

M. Harahap, J. Elfrida, P. Agusman, M. Rafael, R. Abram, and K. Andrianto, “Sistem Cerdas Pemantauan Arus Lalu Lintas Dengan YOLO (You Only Look Once v3),” Semin. Nas. APTIKOM, pp. 367–376, 2019.

D. Alamsyah, S. Gi, and M. Palembang, “Pengenalan Mobil pada Citra Digital Menggunakan HOG-SVM” J. Informatika dan Sistem Informasi, Vol 3, No 2, 2017, 10.35957/jatisi.v3i2.79

A. Arinaldi, J. A. Pradana, and A. A. Gurusinga, “Detection and classification of vehicles for traffic video analytics,” Procedia Comput. Sci., vol. 144, pp. 259–268, 2018, doi: 10.1016/j.procs.2018.10.527.

N. Fadlia and R. Kosasih, “Klasifikasi Jenis Kendaraan Menggunakan Metode Convolutional Neural Network (Cnn),” J. Ilm. Teknol. dan Rekayasa, vol. 24, no. 3, pp. 207–215, 2019, doi: 10.35760/tr.2019.v24i3.2397.

M. Fachrie, “A Simple Vehicle Counting System Using Deep Learning with YOLOv3 Model,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 4, no. 3, pp. 462–468, 2020, doi: 10.29207/resti.v4i3.1871.

Z. A. Fikriya, M. I. Irawan, and S. Soetrisno., “Implementasi Extreme Learning Machine untuk Pengenalan Objek Citra Digital,” J. Sains dan Seni ITS, vol. 6, no. 1, 2017, doi: 10.12962/j23373520.v6i1.21754.

N. K. Negoro, E. Utami, and A. Yaqin, “Klasifikasi Deteksi Penggunaan Masker Menggunakan Metode Convolutional Neural Network,” JIPI (Jurnal Ilm. Penelit. dan Pembelajaran Inform., vol. 8, no. 2, pp. 664–674, 2023, doi: 10.29100/jipi.v8i2.3748.

S. R. Dewi, “Deep Learning Object Detection Pada Video,” Deep Learn. Object Detect. Pada Video Menggunakan Tensorflow Dan Convolutional Neural Netw., pp. 1–60, 2018, [Online]. Available: https://dspace.uii.ac.id/bitstream/handle/123456789/7762/14611242_Syarifah Rosita Dewi_Statistika.pdf?sequence=1

S. Indolia, A. K. Goswami, S. P. Mishra, and P. Asopa, “Conceptual Understanding of Convolutional Neural Network- A Deep Learning Approach,” Procedia Comput. Sci., vol. 132, pp. 679–688, 2018, doi: 10.1016/j.procs.2018.05.069.

G. Plastiras, C. Kyrkou, and T. Theocharides, “Efficient convnet-based object detection for unmanned aerial vehicles by selective tile processing,” ACM Int. Conf. Proceeding Ser., 2018, doi: 10.1145/3243394.3243692.

M. G. A. Binuri, T. Haryanti, and M. A. Haq, “Penerapan Algoritma YOLO v7 Sebagai Deteksi Kecelakaan Kendaraan Pada Lalu Lintas,” Comput. Insight J. Comput. Sci., vol. 4, no. 2, pp. 7–14, 2022.

L. Rahmawati and K. Adi, “Rancang bangun penghitung dan pengidentifikasi kendaraan menggunakan Multiple Object Tracking,” Youngster Phys. J., vol. 6, no. 1, pp. 70–75, 2017.

R. F. Waliulu, “Deteksi dan Penggolongan Kendaraan dengan Kalman Filter dan Model Gaussian di Jalan Tol,” J. Sist. Inf. Bisnis, vol. 8, no. 1, p. 1, 2018, doi: 10.21456/vol8iss1pp1-8.

L. Da Van, L. Y. Zhang, C. H. Chang, K. L. Tong, K. R. Wu, and Y. C. Tseng, “Things in the air: tagging wearable IoT information on drone videos,” Discov. Internet Things, vol. 1, no. 1, 2021, doi: 10.1007/s43926-021-00005-8.

Y. Song, H. Yang, L. Huang, and S. Huang, “YOLOv7-b: An Enhanced Object Detection Model for Multi-Scale and Dense Target Recognition in Remote Sensing Images,” Int. J. Adv. Comput. Sci. Appl., vol. 16, no. 2, pp. 233–248, 2025, doi: 10.14569/IJACSA.2025.0160225.

Z. Bowen, L. Huacai, Z. Shengbo, C. Xinqiang, and X. Hongwei, “Night target detection algorithm based on improved YOLOv7,” Sci. Rep., vol. 14, no. 1, pp. 1–10, 2024, doi: 10.1038/s41598-024-66842-z.

J. Yu, H. Zheng, L. Xie, L. Zhang, M. Yu, and J. Han, “Enhanced YOLOv7 integrated with small target enhancement for rapid detection of objects on water surfaces,” Front. Neurorobot., vol. 17, 2023, doi: 10.3389/fnbot.2023.1315251.

K. Li, Y. Wang, and Z. Hu, “Improved YOLOv7 for Small Object Detection Algorithm Based on Attention and Dynamic Convolution,” Appl. Sci., vol. 13, no. 16, 2023, doi: 10.3390/app13169316.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Deteksi dan Klasifikasi Kendaraan Berbasis Algoritma You Only Look Once (Yolov7)

Dimensions Badge

ARTICLE HISTORY

Published: 2025-04-30

Abstract View: 491 times
PDF Download: 216 times

How to Cite

Rohiman, Y. K., Bulkis Kanata, & L Ahmad S Irfan Akbar. (2025). Deteksi dan Klasifikasi Kendaraan Berbasis Algoritma You Only Look Once (Yolov7). Bulletin of Computer Science Research, 5(3), 268-276. https://doi.org/10.47065/bulletincsr.v5i3.509

Issue

Section

Articles

Most read articles by the same author(s)