Pemanfaatan Algoritma K-Means Clustering Pada Sistem Rental Mobil
DOI:
https://doi.org/10.47065/bulletincsr.v5i3.494Keywords:
Data Mining; Clustering; K-Means; Car Rental; RapidminerAbstract
This research utilizes the K-Means clustering algorithm to analyze car rental data from PT. Station Armada Indonesia, aiming to simplify customer car selection and improve the company's market responsiveness. The study addresses the problem of customer confusion stemming from the wide variety of car types offered by the company. By employing K-Means clustering on August 2023 rental data, the research groups cars based on rental price and mileage. The dataset, initially encompassing four car categories (Minibus MVP, SUV, City Car, and Van/Bus), was further detailed to include individual car models. Three parameters—rental duration, rental price, and mileage—were used for clustering. The K-Means algorithm, chosen for its ease of implementation and speed, was applied iteratively using Euclidean distance to assign data points to the nearest centroid. The study initially defined two clusters. Manual calculations, detailed in the paper, demonstrate the clustering process. These manual results were then compared against results obtained using RapidMiner Studio version 10.1, showcasing the software's efficiency in handling the K-Means process. The RapidMiner output included Data, Statistics, and Annotations views, providing a comprehensive analysis of the clusters. The final clustering, achieved after three iterations, revealed two distinct clusters: one representing less popular car types (Cluster 0), and the other representing the most popular car types (Cluster 1). Cluster 0 contained six car types with average customer mileage ranging from 673 km to 2050 km, while Cluster 1 included 24 car types with average mileage between 270 km and 3388 km. The findings enable PT. Station Armada Indonesia to optimize fleet management and marketing strategies by focusing on the most in-demand car types. The study concludes that K-Means clustering, implemented via RapidMiner, offers a valuable tool for enhancing customer understanding of car selection and improving the company's overall efficiency.
Downloads
References
S. Aminah and F. Febriansyah, “Sistem Prediksi Kelayakan Rental Mobil Menggunakan Algoritma C4. 5,” JURIKOM (Jurnal Ris. Komputer), vol. 8, no. 6, p. 367, 2021.
N. Yunita and R. Rosmawati, “Sistem Informasi Rental Mobil Berbasis Web Pada PT Karya Mobil,” Simpatik J. Sist. Inf. Dan Inform., vol. 1, no. 1, pp. 53–62, 2021.
H. Kurniawan and S. Defit, “Data mining menggunakan metode k-means clustering untuk menentukan besaran uang kuliah tunggal,” J. Appl. Comput. Sci. Technol., vol. 1, no. 2, pp. 80–89, 2020.
M. K. Putri, J. S. F. M. Rahman, F. A. Nursyifa, S. Alfarisi, T. G. S. Putro, and R. Agustin, “Analisis Segmentasi Pasar Dalam Penggunaan Produk Viefresh Di Wilayah Sekitar Kampus Universitas Muhammadiyah Surabaya,” Balanc. Econ. Business, Manag. Account. J., vol. 16, no. 2, 2019.
J. Nasir, “Penerapan Data Mining Clustering Dalam Mengelompokan Buku Dengan Metode K-Means,” J. Simetris, vol. 11, no. 2, pp. 1–13, 2020.
D. Triyansyah and D. Fitrianah, “Analisis Data Mining Menggunakan Algoritma K-Means Clustering Untuk Menentukan Strategi Marketing,” InComTech J. Telekomun. dan Komput., vol. 8, no. 3, pp. 163–182, 2018.
D. Rusdianto and L. Zaelani, “Implementasi Data Mining Menggunakan Algoritma Apriori Untuk Mengetahui Pola Peminjaman Buku di Perpustakaan Universitas Bale Bandung,” J-SIKA| J. Sist. Inf. Karya Anak Bangsa, vol. 2, no. 02, pp. 1–10, 2020.
E. A. Pratiwi, B. Irawan, A. Bahtiar, and N. Rahaningsih, “PENERAPAN FP-GROWTH DALAM MENGANALISIS DATA PENJUALAN DI TOKO X,” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 6, pp. 3549–3556, 2023.
N. F. Adani, A. F. Boy, and R. Syahputra, “Implementasi data mining untuk pengelompokan data penjualan berdasarkan pola pembelian menggunakan algoritma K-Means clustering pada Toko Syihan,” J. Cyber Tech, vol. 2, no. 5, 2019.
R. Rahim et al., “TOPSIS Method Application for Decision Support System in Internal Control for Selecting Best Employees,” J. Phys. Conf. Ser., vol. 1028, no. 1, p. 012052, Jun. 2018, doi: 10.1088/1742-6596/1028/1/012052.
A. Pangestu and T. Ridwan, “Penerapan Data Mining Menggunakan Algoritma K-Means Pengelompokan Pelanggan Berdasarkan Kubikasi Air Terjual Menggunakan Weka,” Just IT J. Sist. Informasi, Teknol. Inf. dan Komput., vol. 12, no. 3, pp. 67–71, 2022.
Z. Arif and A. Nurokhman, “Analisis Perbandingan Algoritma Kriptografi Simetris Dan Asimetris Dalam Meningkatkan Keamanan Sistem Informasi,” J. Teknol. Sist. Inf., vol. 4, no. 2, pp. 394–405, 2023.
D. Gopagoni and P. V Lakshmi, “Automated machine learning tool: The first stop for data science and statistical model building,” Int. J. Adv. Comput. Sci. Appl., no. 2, pp. 410–418, 2020, doi: 10.14569/ijacsa.2020.0110253.
W. S. Azis and D. Atmajaya, “Pengelompokan Minat Baca Mahasiswa menggunakan Metode K-Means,” Ilk. J. Ilm., vol. 8, no. 2, pp. 89–94, 2016.
M. H. Adlun, R. Astuti, and F. M. Basysyar, “PENGELOMPOKAN DATA PENJUALAN SEMBAKO BERDASARKAN PERILAKU PEMBELI MENGGUNAKAN ALGORITMA K-MEANS CLUSTERING,” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 4, pp. 7699–7703, 2024.
D. Yusuf, E. Sestri, and F. Razi, “Implementasi Teknik Clustering Untuk Pengelompokan Mobil Bekas Berdasarkan Grade Pada Mobi Auto,” J. Teknol. Sist. Inf. dan Sist. Komput. TGD, vol. 6, no. 2, pp. 307–313, 2023.
Y. Rifa’i, “Analisis Metodologi Penelitian Kulitatif dalam Pengumpulan Data di Penelitian Ilmiah pada Penyusunan Mini Riset,” Cendekia Inov. Dan Berbudaya, vol. 1, no. 1, pp. 31–37, 2023.
M. S. Jailani, “Teknik pengumpulan data dan instrumen penelitian ilmiah pendidikan pada pendekatan kualitatif dan kuantitatif,” IHSAN J. Pendidik. Islam, vol. 1, no. 2, pp. 1–9, 2023.
D. Ramdhan, G. Dwilestari, R. D. Dana, and A. Ajiz, “Clustering data persediaan barang dengan menggunakan metode K-Means,” MEANS (Media Inf. Anal. dan Sist., pp. 1–9, 2022.
H. Priyatman, F. Sajid, and D. Haldivany, “Klasterisasi Menggunakan Algoritma K-Means Clustering untuk Memprediksi Waktu Kelulusan Mahasiswa,” J. Edukasi Dan Penelit. Inform., vol. 5, no. 1, p. 62, 2019.
S. Aulia, “Klasterisasi Pola Penjualan Pestisida Menggunakan Metode K-Means Clustering (Studi Kasus Di Toko Juanda Tani Kecamatan Hutabayu Raja),” Djtechno J. Teknol. Inf., vol. 1, no. 1, pp. 1–5, 2020.
S. Arifah, E. R. Swedia, and M. R. D. Septian, “ANALISIS PERBANDINGAN ALGORITMA CLUSTERING DALAM MELAKUKAN SEGMENTASI WARNA PADA CITRA JAJAN TRADISIONAL,” Sebatik, vol. 27, no. 1, pp. 70–76, 2023.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Pemanfaatan Algoritma K-Means Clustering Pada Sistem Rental Mobil
ARTICLE HISTORY
How to Cite
Issue
Section
Copyright (c) 2025 Sri Wulandari Maesaroh, T M Diansyah, Risko Liza, Yessi Fitri Annisah Lubis

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).