Pengaruh Hyperparameter Tuning Gradient Boosting Terhadap Prediksi Pemilihan Program Studi Mahasiswa Baru


Authors

  • Harminto Mulyo Universitas Islam Nahdlatul Ulama, Jepara, Indonesia
  • Akhmad Khanif Zyen Universitas Islam Nahdlatul Ulama, Jepara, Indonesia

DOI:

https://doi.org/10.47065/bulletincsr.v5i2.454

Keywords:

Gradient Boosting; hyperparameter tuning; program selection prediction; student admission; model optimization

Abstract

This study aims to improve the accuracy of predicting new student major selection using the Gradient Boosting algorithm optimized through hyperparameter tuning. Gradient Boosting was chosen for its ability to handle complex and diverse data, which is crucial in the context of major prediction. The data used was sourced from the new student admissions database of Universitas Islam Nahdlatul Ulama Jepara for the 2013–2023 period, with preprocessing including data cleaning, imputation of missing values, and transformation of categorical features. The initial accuracy of the Gradient Boosting model with default configuration reached 99.01%, indicating that the dataset had relatively clear and structured patterns, enabling the baseline model to perform highly. However, to ensure generalization and avoid the risk of overfitting, hyperparameter tuning was performed using Randomized Search CV. The tuning results showed an increase in accuracy to 99.84% with optimal configurations including a learning rate of 0.1, 300 estimators, and a maximum tree depth of 4. Feature analysis also revealed that attributes such as "school_type," "school_origin," and "gender" significantly influenced the prediction outcomes. This study demonstrates that hyperparameter tuning can significantly enhance model performance, providing a more accurate and relevant predictive solution for the major selection process. Nevertheless, the study's limitation lies in the scope of the dataset, which originated from a single institution, suggesting the need for further exploration with more diverse data and advanced tuning methods like Bayesian Optimization. These findings provide valuable contributions to educational institutions in developing data-driven systems to support strategic decision-making.

Downloads

Download data is not yet available.

References

F. R. N. Rian and M. Hafiyusholeh, “ANALISIS FAKTOR-FAKTOR YANG MEMPENGARUHI TINGKAT KEPUASAN MAHASISWA TERHADAP PEMILIHAN PROGRAM STUDI MATEMATIKA UINSA SURABAYA MENGGUNAKAN METODE REGRESI LOGISTIK ORDINAL,” AXIOM?: Jurnal Pendidikan dan Matematika, vol. 10, no. 1, p. 26, Jul. 2021, doi: 10.30821/axiom.v10i1.8072.

H. Mulyo and N. A. Maori, “PENINGKATAN AKURASI PREDIKSI PEMILIHAN PROGRAM STUDI CALON MAHASISWA BARU MELALUI OPTIMASI ALGORITMA DECISION TREE DENGAN TEKNIK PRUNING DAN ENSEMBLE,” Jurnal Disprotek, vol. 15, no. 1, pp. 15–25, Jan. 2024, doi: 10.34001/jdpt.v15i1.5585.

M. Setiawati, I. N. Y. A. Wijaya, and N. M. Estiyanti, “Rancang Bangun Sistem Informasi Penjualan, Pembelian Dan Persediaan Berbasis Web (Studi Kasus Resto Jinggo Tutu),” Jutisi?: Jurnal Ilmiah Teknik Informatika dan Sistem Informasi, vol. 10, no. 3, p. 533, Dec. 2021, doi: 10.35889/jutisi.v10i3.723.

A. R. Pratama, R. Rizky Aryanto, A. Taufiq, M. Pratama, and P. Korespondensi, “Model Klasifikasi Calon Mahasiswa Baru Untuk Sistem Rekomendasi Program Studi Sarjana Berbasis Machine Learning,” vol. 9, no. 4, Aug. 2022, doi: 10.25126/jtiik.202294311.

S. Jaya, T. Handoyo, and A. Yulianto, “Penerapan Komputasi Alat Ukur Kemampuan Calon Mahasiswa Baru dalam Proses Pemilihan Program Studi,” PHILANTHROPY: Journal of Psychology, vol. 5, no. 2, p. 365, Dec. 2021, doi: 10.26623/philanthropy.v5i2.4336.

A. R. Al-Aizari et al., “Uncertainty Reduction in Flood Susceptibility Mapping Using Random Forest and eXtreme Gradient Boosting Algorithms in Two Tropical Desert Cities, Shibam and Marib, Yemen,” Remote Sens (Basel), vol. 16, no. 2, p. 336, Jan. 2024, doi: 10.3390/rs16020336.

W. Nugraha and A. Sasongko, “Hyperparameter Tuning pada Algoritma Klasifikasi dengan Grid Search,” May 2022. [Online]. Available: http://sistemasi.ftik.unisi.ac.id

C. Yang, Y. Wang, A. Zhang, H. Fan, and L. Guo, “A Random Forest Algorithm Combined with Bayesian Optimization for Atmospheric Duct Estimation,” Remote Sens (Basel), vol. 15, no. 17, p. 4296, Aug. 2023, doi: 10.3390/rs15174296.

R. R. Putra, I. G. T. Isa, A. B. J. Malyan, E. Laila, and A. T. Wardhana, “Level Optimum Hyperparameter Tuning Epoch dalam Klasifikasi Citra Bencana Kebakaran,” JTERA (Jurnal Teknologi Rekayasa), vol. 7, no. 2, p. 209, Dec. 2022, doi: 10.31544/jtera.v7.i2.2022.209-216.

I. I. Indra, U. Rizki, P. M. Jakak, M. B. Prayogi, and M. Rahman, “Penerapan Metode K-Means Clustering Dalam Pengembangan Strategi Promosi Berbasis Data Penerimaan Mahasiswa Baru (Studi Kasus?:Universitas Nurul Huda),” Jurnal Nasional Ilmu Komputer, vol. 5, no. 1, pp. 25–43, Feb. 2024, doi: 10.47747/jurnalnik.v5i1.1656.

P. Sejati, M. Munawar, M. Pilliang, and H. Akbar, “Studi Komparasi Naive Bayes, K-Nearest Neighbor, dan Random Forest untuk Prediksi Calon Mahasiswa yang Diterima atau Mundur,” Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 9, no. 7, pp. 1341–1348, Dec. 2022, doi: 10.25126/jtiik.2022976737.

A. V. Konstantinov and L. V. Utkin, “Interpretable machine learning with an ensemble of gradient boosting machines,” Knowl Based Syst, vol. 222, p. 106993, Jun. 2021, doi: 10.1016/j.knosys.2021.106993.

M. Salditt, S. Humberg, and S. Nestler, “Gradient Tree Boosting for Hierarchical Data,” Multivariate Behav Res, vol. 58, no. 5, pp. 911–937, Sep. 2023, doi: 10.1080/00273171.2022.2146638.

J. Liu, J. Wu, S. Liu, M. Li, K. Hu, and K. Li, “Predicting mortality of patients with acute kidney injury in the ICU using XGBoost model,” PLoS One, vol. 16, no. 2, p. e0246306, Feb. 2021, doi: 10.1371/journal.pone.0246306.

S. Lee, T. P. Vo, H.-T. Thai, J. Lee, and V. Patel, “Strength prediction of concrete-filled steel tubular columns using Categorical Gradient Boosting algorithm,” Eng Struct, vol. 238, p. 112109, Jul. 2021, doi: 10.1016/j.engstruct.2021.112109.

J. Yu, F. Zhou, K. Zhu, C. Yue, J. Wang, and C. Xie, “Transmission Line Loss Prediction by Cross Validation and Gradient Boosting Decision Tree,” IOP Conf Ser Earth Environ Sci, vol. 440, no. 3, p. 032099, Feb. 2020, doi: 10.1088/1755-1315/440/3/032099.

P. Florek and A. Zagda?ski, “Benchmarking state-of-the-art gradient boosting algorithms for classification,” May 2023.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Pengaruh Hyperparameter Tuning Gradient Boosting Terhadap Prediksi Pemilihan Program Studi Mahasiswa Baru

Dimensions Badge

ARTICLE HISTORY

Published: 2025-02-28

Abstract View: 18 times
PDF Download: 28 times

How to Cite

Harminto Mulyo, & Akhmad Khanif Zyen. (2025). Pengaruh Hyperparameter Tuning Gradient Boosting Terhadap Prediksi Pemilihan Program Studi Mahasiswa Baru. Bulletin of Computer Science Research, 5(2), 131-137. https://doi.org/10.47065/bulletincsr.v5i2.454

Issue

Section

Articles