Pemanfaatan Pengenalan Citra Kematengan Jengkol Untuk Saran Masakan Menggunakan Metode Algoritma Deep Learning


Authors

  • Handika Sanjaya Universitas Bina Insan, Lubuklinggau, Indonesia
  • Rudi Kurniawan Universitas Bina Insan, Lubuklinggau, Indonesia
  • Rusdiyanto Universitas Bina Insan, Lubuklinggau, Indonesia

DOI:

https://doi.org/10.47065/bulletincsr.v4i4.358

Keywords:

Clove; Detection; Deep Learning; Dataset

Abstract

Currently, technological development is progressing rapidly. One of the areas is in artificial intelligence and computer vision technology. One of the branches of science studied in artificial intelligence and computer vision technology is deep learning, which focuses on the use of artificial neural networks that learn about classification and object detection directly through images and videos. With the advent of deep learning, researchers are focusing on developing a jengkol (dogfruit) ripeness detection system using deep learning methods. This research uses 1500 jengkol images as a dataset and uses Roboflow for labeling. The results of the labeling will be divided into 3 types of classes: young, medium, and old jengkol. The YOLOV5 algorithm is used for training the jengkol dataset. The next stage is testing, where the approaches used are confusion matrix, classification report, Mean Squared Error (MSE), and Root Mean Squared Error (RMSE), as well as the F1-Score value. The purpose of this testing is to see the precision results and identify the optimal accuracy on data from the trained model that can be achieved by the system being tested or evaluated, which involves compiling a classification report into three categories: young, medium, and old, based on visual characteristics that can be detected by the deep learning algorithm. From the real-time testing and evaluation results obtained in this study, the accuracy value is 80%.

Downloads

Download data is not yet available.

References

Ismail, Muinuddin Mutmainna, and Dyah M, “Eksplorasi Makanan Khas Enrekang,” Eksplor. Makanan Khas Tradis. Kabupaten Enrekang, vol. vol 5 no., no. E-ISSN 2716-4225, pp. 1–12, 2023.

R. Rusmaniah, H. Herman, P. D. Indriyani, R. M. Sari, and D. A. Nugroho, “Pelestarian Kuliner Lokal Jengkol Tahilala Sebagai Warisan Dan Perwujudan Nilai Budaya Banjar Di Desa Pingaran,” Anterior J., vol. 21, no. 3, pp. 57–61, 2022, doi: 10.33084/anterior.v21i3.3502.

M. Thressia and M. Mulyadi, “Teknologi Pengolahan Buah Jengkol Dan Pemasaran Bagi Masyarakat Di Desa Sido Makmur Kecamatan Sipora Utara Kabupaten Kepulauan Mentawai,” J. Hilirisasi IPTEKS, vol. 5, no. 3, pp. 157–171, 2022, doi: 10.25077/jhi.v5i3.608.

Direktorat Jenderal Hortikultura, Produksi Tanaman Sayuran Menurut Provinsi dan jenis tanaman 2021. 2020.

A. Kusuma, A. Rangga, S. Nurrohman, K. T. Anggoro, and R. Susun, “Implementasi Algoritma Yolo Dalam Pendeteksian Tingkat Kematangan Pada Buah Pepaya,” vol. 1, no. 1, pp. 74–77, 2023.

S. Ilahiyah and A. Nilogiri, “Implementasi Deep Learning Pada Identifikasi Jenis Tumbuhan Berdasarkan Citra Daun Menggunakan Convolutional Neural Network _ Ilahiyah _ JUSTINDO (Jurnal Sistem dan Teknologi Informasi Indonesia),” JUSTINDO(Jurnal Sist. Teknol. Inf. Indones., vol. 3, no. 2, pp. 49–56, 2018.

S. Yuliany, Aradea, and Andi Nur Rachman, “Implementasi Deep Learning pada Sistem Klasifikasi Hama Tanaman Padi Menggunakan Metode Convolutional Neural Network (CNN),” J. Buana Inform., vol. 13, no. 1, pp. 54–65, 2022, doi: 10.24002/jbi.v13i1.5022.

H. A. Pratiwi, M. Cahyanti, and M. Lamsani, “Implementasi Deep Learning Flower Scanner Menggunakan Metode Convolutional Neural Network,” Sebatik, vol. 25, no. 1, pp. 124–130, 2021, doi: 10.46984/sebatik.v25i1.1297.

J. PARDEDE and H. HARDIANSAH, “Deteksi Objek Kereta Api menggunakan Metode Faster R-CNN dengan Arsitektur VGG 16,” MIND J., vol. 7, no. 1, pp. 21–36, 2022, doi: 10.26760/mindjournal.v7i1.21-36.

F. Rachmawati and D. Widhyaestoeti, “Deteksi Jumlah Kendaraan di Jalur SSA Kota Bogor Menggunakan Algoritma Deep Learning YOLO,” Pros. LPPM UIKA Bogor, pp. 360–370, 2020.

V. Fransisca and H. Santoso, “Penerapan Gamma Correction Dalam Peningkatan Pendeteksian Objek Malam Pada Algoritma YOLOv5,” Build. Informatics, Technol. Sci., vol. 5, no. 1, pp. 59–69, 2023, doi: 10.47065/bits.v5i1.3553.

R. Dwiyanto, D. W. Widodo, and P. Kasih, “Implementasi Metode You Only Look Once ( YOLOv5 ) Untuk Klasifikasi Kendaraan Pada CCTV Kabupaten Tulungagung,” Semin. Nas. Inov. Teknol., vol. 1, no. 1, pp. 102–104, 2022.

Y. A. S. Ahmad Fali Oklilas, Sukemi, Dinda Dwinta, Ghinadhia Shofi, Nanda Putri Mariza, Sri ArumKinanti, “Akurasi Pengujian Model Hasil Training menggunakan YOLOv4 untuk Pengenalan Kendaraan di Jalan Raya,” … J. Penelit. Ilmu …, pp. 799–806, 2023, [Online]. Available: https://jurnal.polsri.ac.id/index.php/jupiter/article/view/6537%0Ahttps://jurnal.polsri.ac.id/index.php/jupiter/article/download/6537/2528.

L. Qadrini, A. Sepperwali, and A. Aina, “Decision Tree Dan Adaboost Pada Klasifikasi Penerima Program Bantuan Sosial,” J. Inov. Penelit., vol. 2, no. 7, pp. 1959–1966, 2021.

W. I. Rahayu, C. Prianto, and E. A. Novia, “Perbandingan Algoritma K-Means dan Naive Bayes untuk Memprediksi Prioritas Pembayaran Tagihan Rumah Sakit Berdasarkan Tingkat Kepentingan pada PT. Pertamina (Persero),” J. Tek. Inform., vol. 13, no. 2, pp. 1–8, 2021.

N. J. Hayati, D. Singasatia, and M. R. Muttaqin, “Object Tracking Menggunakan Algoritma You Only Look Once (YOLO)v8 untuk Menghitung Kendaraan,” Komputa J. Ilm. Komput. dan Inform., vol. 12, no. 2, pp. 91–99, 2023, doi: 10.34010/komputa.v12i2.10654.

A. M. Ambarak and A. Z. Falani, “Pengembangan Aplikasi Bahasa Isyarat Indonesia Berbasis Realtime Video Menggunakan Model Machine Learning,” JIKA (Jurnal Inform., vol. 7, no. 1, p. 89, 2023, doi: 10.31000/jika.v7i1.7277.

L. M. Muhammad Ferian Rizky Akbari, Bayu Rahayudi, “Implementasi Deep Learning menggunakan Algoritma EfficientDet untuk Sistem Deteksi Kelayakan Penerima Bantuan Langsung Tunai berdasarkan Citra Rumah di Wilayah Kabupaten Kediri,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 7, no. 4, pp. 1817–1825, 2023, [Online]. Available: https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/12596.

L. Rahma, H. Syaputra, A. H. Mirza, and S. D. Purnamasari, “Objek Deteksi Makanan Khas Palembang Menggunakan Algoritma YOLO (You Only Look Once),” J. Nas. Ilmu Komput., vol. 2, no. 3, pp. 213–232, 2021, doi: 10.47747/jurnalnik.v2i3.534.

K. Khairunnas, E. M. Yuniarno, and A. Zaini, “Pembuatan Modul Deteksi Objek Manusia Menggunakan Metode YOLO untuk Mobile Robot,” J. Tek. ITS, vol. 10, no. 1, 2021, doi: 10.12962/j23373539.v10i1.61622.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Pemanfaatan Pengenalan Citra Kematengan Jengkol Untuk Saran Masakan Menggunakan Metode Algoritma Deep Learning

Dimensions Badge

ARTICLE HISTORY

Published: 2024-06-30

Abstract View: 335 times
PDF Download: 290 times

How to Cite

Sanjaya, H., Kurniawan, R. ., & Rusdiyanto. (2024). Pemanfaatan Pengenalan Citra Kematengan Jengkol Untuk Saran Masakan Menggunakan Metode Algoritma Deep Learning. Bulletin of Computer Science Research, 4(4), 356-367. https://doi.org/10.47065/bulletincsr.v4i4.358

Issue

Section

Articles