Klasifikasi Penyakit Gagal Jantung Menggunakan Algoritma K-Nearest Neighbor
DOI:
https://doi.org/10.47065/bulletincsr.v3i1.203Keywords:
Heart Failure; Algorithm K-Nearest Neighbor; Prediction; Data MiningAbstract
Cardiovascular diseases (CVDs) are the number 1 cause of death globally, taking an estimated 17.9 million lives each year, which accounts for 31% of all deaths worldwide. Four out of 5CVD deaths are due to heart attacks and strokes, and one-third of these deaths occur prematurely in people under 70 years of age. Heart failure is a common event caused by CVDs and this dataset contains 11 features that can be used to predict a possible heart disease. People with cardiovascular disease or who are at high cardiovascular risk (due to the presence of one or more risk factors such as hypertension, diabetes, hyperlipidaemia or already established disease) need early detection and management wherein a machine learning model can be of great help.
Downloads
References
F. Wulandari, P. A. Jusia, and J. Jasmir, “Klasifikasi Data Mining Untuk Mendiagnosa Penyakit ISPA Menggunakan Metode Naïve Bayes Pada Puskesmas Jambi Selatan,” J. Manaj. Teknol. dan Sist. Inf., vol. 2, no. 3, pp. 214–227, 2020.
M. R. Kumaseh, L. Latumakulita, and N. Nainggolan, “Segmentasi citra digital ikan menggunakan metode Tresholding,” J. Ilm. Sains, vol. 13 No., no. 1, p. 6, 2013.
A. Wanto and A. P. Windarto, “Analisis Prediksi Indeks Harga Konsumen Berdasarkan Kelompok Kesehatan Dengan Menggunakan Metode Backpropagation,” J. Penelit. Tek. Inform. Sink., vol. 2, no. 2, pp. 37–43, 2017.
B. H. Hayadi and A. Setiawan, “Sistem Berbasis Pengetahuan Dengan Menggunakan Fuzzy Tsukamoto (Untuk Kesehatan Dan Perawatan Bayi),” in SENTIKA, 2016, vol. 2016, no. Sentika, pp. 18–19.
C. Science, “Prediksi Penyakit Jantung dengan Algoritma Klasifikasi,” vol. 5, no. 1, pp. 978–979, 2019.
S. Nurmaini, A. Darmawahyuni, A. N. S. Mukti, M. N. Rachmatullah, F. Firdaus, and B. Tutuko, “Deep learning-based stacked denoising and autoencoder for ECG heartbeat classification,” Electron., vol. 9, no. 1, 2020, doi: 10.3390/electronics9010135.
E. Rasywir, R. Sinaga, and Y. Pratama, “Analisis dan Implementasi Diagnosis Penyakit Sawit dengan Metode Convolutional Neural Network ( CNN ),” J. Paradig. UBSI, vol. 22, no. 2, pp. 117–123, 2020.
Fachruddin, M. R. Pahlevi, M. Ismail, and E. Rasywir, “Pengujian Implementasi Sistem Pengelolaan Keuangan Masjid Berbasis Web Dan Android,” J. Paradig. UBSI, vol. 22, no. 2, pp. 124–131, 2020.
Saparudin and E. Rasywir, “Pengenalan potensi anak melalui sidik jari menggunakan algoritma voting feature intervals 5 (vfi5) 1,” vol. I, no. I, pp. 25–30, 2012.
M. R. Borroek, E. Rasywir, Y. Pratama, Fachruddin, and M. Istoningtyas, “Analysis on Knowledge Layer Application for Knowledge Based System,” in Proceedings of 2018 International Conference on Electrical Engineering and Computer Science, ICECOS 2018, 2019, pp. 177–182, doi: 10.1109/ICECOS.2018.8605262.
E. Rasywir, R. Sinaga, and Y. Pratama, “Evaluasi Pembangunan Sistem Pakar Penyakit Tanaman Sawit dengan Metode Deep Neural Network ( DNN ),” vol. 4, pp. 1206–1215, 2020, doi: 10.30865/mib.v4i4.2518.
H. Kaur and V. Kumari, “Predictive modelling and analytics for diabetes using a machine learning approach,” Appl. Comput. Informatics, 2019, doi: 10.1016/j.aci.2018.12.004.
R. I. Fajri, “Identifikasi Penyakit Daun Tanaman Kelapa Sawit Menggunakan Support Vector Machine,” J. Teknol. Perkeb., 2014, [Online]. Available: http://repository.usu.ac.id/handle/123456789/42256.
Y. Pratama and E. Rasywir, “Eksperimen Penerapan Sistem Traffic Counting dengan Algoritma YOLO (You Only Look Once) V.4.,” J. Media Inform. Budidarma, vol. 5, no. 4, p. 1438, 2021, doi: 10.30865/mib.v5i4.3309.
Y. Hartiwi, E. Rasywir, Y. Pratama, and P. A. Jusia, “Sistem Manajemen Absensi dengan Fitur Pengenalan Wajah dan GPS Menggunakan YOLO pada Platform Android,” J. Media Inform. Budidarma, vol. 4, pp. 1235–1242, 2020, doi: 10.30865/mib.v4i4.2522.
Fachruddin, M. R. Pahlevi, M. Ismail, E. Rasywir, and Y. Pratama, “Analisis Usability Pada Implementasi Sistem Pengelolaan Keuangan Masjid Menggunakan USE Questionnaire,” J. Media Inform. Budidarma, vol. 4, pp. 1216–1224, 2020, doi: 10.30865/mib.v4i4.2518.
V. N. Sari, L. Y. Astri, and E. Rasywir, “Analisis Dan Penerapan Algoritma Naive Bayes Untuk Evaluasi,” J. Ilm. Mhs. Tek. Inform., vol. 2, no. 1, pp. 53–68, 2020.
Y. Pratama and E. Rasywir, “Automatic Cost Estimation Analysis on Datawarehouse Project with Modified Analogy Based Method,” in Proceedings of 2018 International Conference on Electrical Engineering and Computer Science, ICECOS 2018, 2019, pp. 171–176, doi: 10.1109/ICECOS.2018.8605195.
E. Gho, D. Z. Abidin, and E. Rasywir, “Analisis Dan Penerapan Data Mining Pada Transaksi Penjualan Obat Menggunakan Algoritma Apriori Di Apotek Persijam,” Tek. Inform. STIKOM Din. Bangsa, pp. 56–64, 2013.
Hendrawan, A. Haris, E. Rasywir, and Y. Pratama, “Sistem Pakar Diagnosis Penyakit Tanaman Karet dengan Metode Fuzzy Mamdani Berbasis Web,” J. Media Inform. Budidarma, vol. 4, no. 4, pp. 1225–1234, 2020, doi: 10.30865/mib.v4i4.2521.
E. Rasywir, Y. Pratama, H. Hendrawan, and M. Istoningtyas, “Removal of Modulo as Hashing Modification Process in Essay Scoring System Using Rabin-Karp,” 2018 Int. Conf. Electr. Eng. Comput. Sci., pp. 159–164, 2018.
E. Rasywir and A. Purwarianti, “Eksperimen pada Sistem Klasifikasi Berita Hoax Berbahasa Indonesia Berbasis Pembelajaran Mesin,” J. Cybermatika, vol. 3, no. 2, pp. 1–8, 2015, [Online]. Available: http://cybermatika.stei.itb.ac.id/ojs/index.php/cybermatika/article/view/133.
F. Fachruddin, E. Rasywir, Hendrawan, Y. Pratama, D. Kisbianty, and M. R. Borroek, “Real Time Detection on Face Side Image with Ear Biometric Imaging Using Integral Image and Haar- Like Feature,” 2018 Int. Conf. Electr. Eng. Comput. Sci., pp. 165–170, 2018.
D. Zaenal Abidin and E. Rasywir, “Penerapan Data Mining Klasifikasi Untuk Memprediksi Potensi Mahasiswa Berprestasi Di Stikom Dinamika Bangsa Jambi Dengan Metode Naive Bayes,” J. Ilm. Mhs. Tek. Inform., vol. 3, no. 2, 2021.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Klasifikasi Penyakit Gagal Jantung Menggunakan Algoritma K-Nearest Neighbor
ARTICLE HISTORY
How to Cite
Issue
Section
Copyright (c) 2022 Yovi Pratama, Anton Prayitno, Defrin Azrian, Nur Aini, Yoga Rizki, Errissya Rasywir

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).