Aplikasi Klasifikasi Sampah Organik dan Non Organik dengan Metode GLCM Dan LS-SVM
DOI:
https://doi.org/10.47065/bulletincsr.v3i1.198Keywords:
LS-SVM; GLCM; Organic Waste; Inorganic Waste; ClassificationAbstract
Garbage is an item that no longer has any benefits for its users, which is the residue from the results of daily human activities or is the result of natural processes that have a solid form. The existing waste processing is only limited to conventional waste processing, which is only transported from the waste-producing place to the Temporary Disposal Site (TPS) and then just dumped into the TPS without processing it first, even though the rules for waste management procedures that must be carried out are: waste collection is then recycled and disposed of to the TPS, then the waste is transported to be disposed of at the Final Disposal Site. Therefore, in the process of waste management, it is necessary to separate waste into organic and non-organic waste. However, most people still have difficulty in sorting organic and non-organic waste, so an application is needed to help socialize waste sorting to the community. In this study, the Least Square Support Vector Machine (LS-SVM) method will be used to classify the types of waste. Meanwhile, to perform the texture extraction process from the included garbage image, the Gray Level Co-occurrence Matrix (GLCM) method will be used. The result of this research is a waste classification application that can provide knowledge and add insight for users, especially in distinguishing the types of organic waste and inorganic waste. The application of the GLCM and LS-SVM methods in the built application can detect types of organic and inorganic waste with a success rate of 97%.
Downloads
References
Q. Maulani dan W. N. Fatimah, “Pengelolaan Sampah Rumah Susun Sederhana Sewa Baleendah, Kecamatan Baleendah Kabupaten Bandung Tahun 2018”, Jurnal Kesehatan Lingkungan, vol. 12, no. 2, pp. 145-153, 2020.
W. O. Rosnawati, Bahtiar dan H. Ahmad, “Pengelolaan Sampah Rumah Tangga Masyarakat Pemukiman Atas Laut Di Kecamatan Kota Ternate”, Jurnal Techno (Jurnal Ilmu Eksakta), vol. 06, no. 02, pp. 45-53, 2017.
I. W. Widiarti, “Pengelolaan Sampah Berbasis “Zero Waste” Skala Rumah Tangga Secara Mandiri”,
Jurnal Sains dan Teknologi Lingkungan, vol. 4, no. 2, pp. 101-113, 2012.
A. K. Agarini, S. S. Aulanikma dan U. A. Mumtahanah, “Pelatihan Pengelolaan Sampah Plastik Menjadi Produk Baru Dan Bernilai Ekonomis Di Kelurahan Wates”, Abdipraja: Jurnal Pengabdian Kepada Masyarakat, vol. 1, no. 1, pp. 36-42, 2020.
K. F. Juwono dan K. C. Diyanah, “Analisis Pengelolaan Sampah Rumah Tangga (Sampah Medis Dan Non Medis) Di Kota Surabaya Selama Pandemi Covid-19”, Jurnal Ekologi Kesehatan, vol. 20, no. 1, pp. 12-20, 2021.
F. P. Fantara, D. Syauqy dan G. E. Setyawan, “Implementasi Sistem Klasifikasi Sampah Organik dan Anorganik dengan Metode Jaringan Saraf Tiruan Backpropagation”, Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 2, no. 11, pp. 5577-5586, 2018.
I. C. R. Drajana, “Metode Support Vector Machine Dan Forward Selection Prediksi Pembayaran Pembelian Bahan Baku Kopra”, ILKOM Jurnal Ilmiah, vol. 9, no. 2, pp. 116-123, 2017.
H. Khaulasari, “Combine Sampling Least Square Support Vector Machine Untuk Klasifikasi Multi Class Imbalanced Data”, Jurnal Widyaloka Ikip Widya Darma, vol. 5, no. 3, pp. 303-316, 2018.
A. Triyono, R. B. Trianto dan D. M. P. Arum, “Penerapan Least Squares Support Vector Machines (LSSVM) dalam Peramalan Indonesia Composite Index”, Jurnal Informatika Universitas Pamulang, vol. 6, no. 1, pp. 210-216, 2021.
Neneng, A. S. Puspaningrum dan A. A. Aldino, “Perbandingan Hasil Klasifikasi Jenis Daging Menggunakan Ekstraksi Ciri Tekstur Gray Level Co-occurrence Matrices (GLCM) Dan Local Binary Pattern (LBP)”, SMATIKA Jurnal, vol. 11, no. 01, pp. 48-52, 2021.
C. Rahmad, M. Astiningrum dan A. P. Lesmana, “Pengenalan Tas Ransel Pada Citra Digital Dengan Ekstraksi Fitur Tekstur Menggunakan Metode Gray Level Co-Occurrence Matrix”, Jurnal Informatika Polinema, vol. 4, no. 4, pp. 258-262, 2018.
J. Dobiki, “Analisis Ketersediaan Prasarana Persampahan di Pulau Kumo dan Pulau Kakara di Kabupaten Halmahera Utara,” Jurnal Spasial, vol. 5, no. 2, pp. 220-228, 2018.
Sulistiyanti, et al, penerapan citra dasar dan contoh penerapanya, Yogyakarta: teknosain, 2016.
Diwandari, et al, “Perbandingan Algoritme J48 Dan Nbtree Untuk Klasifikasi Diagnosa Penyakit Pada Soybean”, Sentika, 2015.
Madenda, et al, Pengolahan Citra & Video Digital, Jakarta, 2015.
Sanjaya, et al, “Klasifikasi Buah Mangga Berdasarkan Tingkat Kematangan Menggunakan Least-Squares Support Vector Machine”, 2016.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Aplikasi Klasifikasi Sampah Organik dan Non Organik dengan Metode GLCM Dan LS-SVM
ARTICLE HISTORY
How to Cite
Issue
Section
Copyright (c) 2022 Joni Wong

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).