Implementasi Teknik Computer Vision Untuk Deteksi Viridiplantae Pada Lahan Pasca Tambang


Authors

  • Yudistira Bagus Pratama Universitas Muhammadiyah Bangka Belitung, Pangkal Pinang, Indonesia
  • Nurzaidah Putri Dalimunthe Universitas Muhammadiyah Bangka Belitung, Pangkal Pinang, Indonesia

DOI:

https://doi.org/10.47065/bulletincsr.v3i1.193

Keywords:

Objek Detection; Artificial Intelligence; Green Mining

Abstract

The use of computers as producers of technology-based products is hugely impressive. Computer vision technology, which is a branch of artificial intelligence, is developing very quickly. This is what underlies the need for this research to be done to detect the number of green plants (Viridiplantae) that are located on critical post-mining land, where it is known that the area is land that has been damaged with the condition of the soil being shallow and a layer of remaining tailings until a layer of rock is visible that can inhibit plant growth. Thus developed an application for detecting green plants using computer vision as modern ways to improve the recognition of objects in images. Computer vision applications are implemented on desktop applications created with the Python aiming to balance modern technology with the concept of preserving the environment. The development method used Cross Industry Standard Process for Data Mining which is the most representative method for planning overall data extraction, the design of the experiment and evaluation. The results of the research proved that only a few green plants were detected on post-mining land, so it is necessary to increase public awareness that environmental preservation and maintenance is very important.

Downloads

Download data is not yet available.

References

S. R. Dewi, Deep Learning Object Detection Pada Video Menggunakan Tensorflow dan Convolutional Neural Network. 2018.

H. Hirfan, ‘STRATEGI REKLAMASI LAHAN PASCA TAMBANG’, PENA TEKNIK: Jurnal Ilmiah Ilmu-Ilmu Teknik, vol. 1, no. 1, p. 101, Jul. 2018.

P. Hamet and J. Tremblay, ‘Artificial intelligence in medicine’, Metabolism, vol. 69S, pp. S36–S40, Apr. 2017.

B. Mondal, ‘Artificial intelligence: State of the art’, in Intelligent Systems Reference Library, Cham: Springer International Publishing, 2020, pp. 389–425.

I. El Naqa and M. J. Murphy, ‘What Is Machine Learning? ??? I’, in Machine Learning in Radiation Oncology: Theory and Applications, R. El Naqa and M. J. Li, Eds. 2015, pp. 3–11.

P. Felzenszwalb, R. Girshick, D. Mcallester, and D. Ramanan, ‘Object detection with discriminatively trained part based models’, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 32, no. 9, pp. 1627–1645, 2010.

L.-B. Chang, Y. Jin, W. Zhang, E. Borenstein, and S. Geman, ‘Context, computation, and optimal ROC performance in hierarchical models’, Int. J. Comput. Vis., vol. 93, no. 2, pp. 117–140, Jun. 2011.

M. Naveenkumar and A. Vadivel, ‘OpenCV for computer vision applications’, in Proceedings of national conference on big data and cloud computing (NCBDC’15), 2015, pp. 52–56.

A. Johansen, Python: The Ultimate Beginner’s Guide! CreateSpace Independent Publishing Platform, 2016.

Y. Yudhistira, W. K. Hidayat, and A. Hadiyarto, ‘KAJIAN DAMPAK KERUSAKAN LINGKUNGAN AKIBAT KEGIATAN PENAMBANGAN PASIR DI DESA KENINGAR DAERAH KAWASAN GUNUNG MERAPI’, J. Ilmu Lingkung., vol. 9, no. 2, p. 76, Oct. 2012.

Y. Windusari, R. H. Susanto, Z. Dahlan, and W. Susetyo, ‘Asosiasi Jenis Pada Komunitas Vegetasi Suksesi di Kawasan Pengendapan Tailing Tanggul Ganda di Pertambangan PTFI Papua’, Biota?: Jurnal Ilmiah Ilmu-Ilmu Hayati, vol. 16, no. 2, pp. 242–251, Jun. 2011

N. Najib and J. Junaedi, ‘Kajian Kelayakan Kegiatan Pertambangan Bahan Galian Golongan C di Kecamatan Cepogo Kabupaten Boyolali’, Teknik, vol. 30, no. 2, pp. 137–140.

‘Beberapa Ancaman Terhadap Kawasan Hutan Lindung di Kabupaten Tanah Laut Kalimantan Selatan’, Jurnal Hutan Tropis Borneo, vol. 10, no. 27, pp. 262–276, 2009.

L. D. Asir, ‘Alternatif Teknik Rehabilitasi Lahan Terdegradasi pada Lahan Pasca Galian Industri’, Info BPK Manado, vol. 3, no. 2, pp. 113–129, 2013.

R. E. Masithoh, B. Rahardjo, L. Sutiarso, and A. Hardjoko, ‘Pengembangan computer vision system sederhana untuk menentukan kualitas tomat’, Agritech, vol. 31, no. 2, 2011

S. B. Dhaygude and N. P. Kumbhar, ‘Agricultural plant leaf disease detection using image processing’, International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, vol. 2, no. 1, pp. 599–602, 2013.

A. P. W. Wibowo, ‘Implementasi Teknik Computer Vision Dengan Metode Colored Markers Trajectory Secara Real Time’, Jurnal Teknik Informatika, vol. 8, no. 1, pp. 38–42, 2016.

Metode Penelitian Kuantitatif, Kualitatif dan R& D. Bandung: PT Alfabet, 2016.

A. P. W. Wibowo, ‘Penerapan Teknik Computer Vision Pada Bidang Fitopatologi Untuk Diteksi Penyakit dan Hama Tanaman Cabai’, Jurnal Informatika: Jurnal Pengembangan IT, vol. 2, no. 2, pp. 102–108, 2017.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Implementasi Teknik Computer Vision Untuk Deteksi Viridiplantae Pada Lahan Pasca Tambang

Dimensions Badge

ARTICLE HISTORY

Published: 2022-12-31

Abstract View: 1277 times
PDF Download: 1101 times

How to Cite

Yudistira Bagus Pratama, & Nurzaidah Putri Dalimunthe. (2022). Implementasi Teknik Computer Vision Untuk Deteksi Viridiplantae Pada Lahan Pasca Tambang. Bulletin of Computer Science Research, 3(1), 64-72. https://doi.org/10.47065/bulletincsr.v3i1.193

Issue

Section

Articles