Implementasi Teknik Computer Vision Untuk Deteksi Viridiplantae Pada Lahan Pasca Tambang
DOI:
https://doi.org/10.47065/bulletincsr.v3i1.193Keywords:
Objek Detection; Artificial Intelligence; Green MiningAbstract
The use of computers as producers of technology-based products is hugely impressive. Computer vision technology, which is a branch of artificial intelligence, is developing very quickly. This is what underlies the need for this research to be done to detect the number of green plants (Viridiplantae) that are located on critical post-mining land, where it is known that the area is land that has been damaged with the condition of the soil being shallow and a layer of remaining tailings until a layer of rock is visible that can inhibit plant growth. Thus developed an application for detecting green plants using computer vision as modern ways to improve the recognition of objects in images. Computer vision applications are implemented on desktop applications created with the Python aiming to balance modern technology with the concept of preserving the environment. The development method used Cross Industry Standard Process for Data Mining which is the most representative method for planning overall data extraction, the design of the experiment and evaluation. The results of the research proved that only a few green plants were detected on post-mining land, so it is necessary to increase public awareness that environmental preservation and maintenance is very important.
Downloads
References
S. R. Dewi, Deep Learning Object Detection Pada Video Menggunakan Tensorflow dan Convolutional Neural Network. 2018.
H. Hirfan, ‘STRATEGI REKLAMASI LAHAN PASCA TAMBANG’, PENA TEKNIK: Jurnal Ilmiah Ilmu-Ilmu Teknik, vol. 1, no. 1, p. 101, Jul. 2018.
P. Hamet and J. Tremblay, ‘Artificial intelligence in medicine’, Metabolism, vol. 69S, pp. S36–S40, Apr. 2017.
B. Mondal, ‘Artificial intelligence: State of the art’, in Intelligent Systems Reference Library, Cham: Springer International Publishing, 2020, pp. 389–425.
I. El Naqa and M. J. Murphy, ‘What Is Machine Learning? ??? I’, in Machine Learning in Radiation Oncology: Theory and Applications, R. El Naqa and M. J. Li, Eds. 2015, pp. 3–11.
P. Felzenszwalb, R. Girshick, D. Mcallester, and D. Ramanan, ‘Object detection with discriminatively trained part based models’, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 32, no. 9, pp. 1627–1645, 2010.
L.-B. Chang, Y. Jin, W. Zhang, E. Borenstein, and S. Geman, ‘Context, computation, and optimal ROC performance in hierarchical models’, Int. J. Comput. Vis., vol. 93, no. 2, pp. 117–140, Jun. 2011.
M. Naveenkumar and A. Vadivel, ‘OpenCV for computer vision applications’, in Proceedings of national conference on big data and cloud computing (NCBDC’15), 2015, pp. 52–56.
A. Johansen, Python: The Ultimate Beginner’s Guide! CreateSpace Independent Publishing Platform, 2016.
Y. Yudhistira, W. K. Hidayat, and A. Hadiyarto, ‘KAJIAN DAMPAK KERUSAKAN LINGKUNGAN AKIBAT KEGIATAN PENAMBANGAN PASIR DI DESA KENINGAR DAERAH KAWASAN GUNUNG MERAPI’, J. Ilmu Lingkung., vol. 9, no. 2, p. 76, Oct. 2012.
Y. Windusari, R. H. Susanto, Z. Dahlan, and W. Susetyo, ‘Asosiasi Jenis Pada Komunitas Vegetasi Suksesi di Kawasan Pengendapan Tailing Tanggul Ganda di Pertambangan PTFI Papua’, Biota?: Jurnal Ilmiah Ilmu-Ilmu Hayati, vol. 16, no. 2, pp. 242–251, Jun. 2011
N. Najib and J. Junaedi, ‘Kajian Kelayakan Kegiatan Pertambangan Bahan Galian Golongan C di Kecamatan Cepogo Kabupaten Boyolali’, Teknik, vol. 30, no. 2, pp. 137–140.
‘Beberapa Ancaman Terhadap Kawasan Hutan Lindung di Kabupaten Tanah Laut Kalimantan Selatan’, Jurnal Hutan Tropis Borneo, vol. 10, no. 27, pp. 262–276, 2009.
L. D. Asir, ‘Alternatif Teknik Rehabilitasi Lahan Terdegradasi pada Lahan Pasca Galian Industri’, Info BPK Manado, vol. 3, no. 2, pp. 113–129, 2013.
R. E. Masithoh, B. Rahardjo, L. Sutiarso, and A. Hardjoko, ‘Pengembangan computer vision system sederhana untuk menentukan kualitas tomat’, Agritech, vol. 31, no. 2, 2011
S. B. Dhaygude and N. P. Kumbhar, ‘Agricultural plant leaf disease detection using image processing’, International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, vol. 2, no. 1, pp. 599–602, 2013.
A. P. W. Wibowo, ‘Implementasi Teknik Computer Vision Dengan Metode Colored Markers Trajectory Secara Real Time’, Jurnal Teknik Informatika, vol. 8, no. 1, pp. 38–42, 2016.
Metode Penelitian Kuantitatif, Kualitatif dan R& D. Bandung: PT Alfabet, 2016.
A. P. W. Wibowo, ‘Penerapan Teknik Computer Vision Pada Bidang Fitopatologi Untuk Diteksi Penyakit dan Hama Tanaman Cabai’, Jurnal Informatika: Jurnal Pengembangan IT, vol. 2, no. 2, pp. 102–108, 2017.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Implementasi Teknik Computer Vision Untuk Deteksi Viridiplantae Pada Lahan Pasca Tambang
ARTICLE HISTORY
How to Cite
Issue
Section
Copyright (c) 2022 Yudistira Bagus Pratama, Nurzaidah Putri Dalimunthe

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).