Metode Hybrid Dalam Pengelompokkan Kemampuan Calistung Siswa Berbasis Machine Learning
DOI:
https://doi.org/10.47065/jimat.v5i2.500Keywords:
Hybrid Method; K-Means Clustering; K-Nearest Neighbors (KNN); Calistung SkillsAbstract
Students reading, writing, and arithmetic abilities (reading, writing, and arithmetic) are an important foundation in the academic development of elementary school students. This study aims to group students' reading, writing, and arithmetic abilities using a hybrid method based on machine learning, with grade data from two Elementary Schools in Lubuklinggau City. The method applied combines the K-Means Clustering algorithm for initial grouping and K-Nearest Neighbors (KNN) for classification. The analysis process includes data preprocessing, application of K-Means, cluster validation using Silhouette Score, and classification with KNN to ensure accuracy. As a result, K-Means successfully grouped students into three clusters: Middle (0), Low (1), and High (2). The KNN model with k = 3 which has the highest accuracy of 95% provides very good accuracy in testing the K-Nearest Neighbors (KNN) classification model with an accuracy of 97%, with very good precision, recall, and F1-score values for all clusters. These findings indicate that this hybrid approach is effective in classifying students' reading, writing and arithmetic abilities, which has implications for the development of more targeted learning strategies based on the characteristics of each group of students.
Downloads
References
A. Candra Dewi et al., “Peran Kemajuan Teknologi dalam Dunia Pendidikan,” J. Educ., vol. 06, no. 01, pp. 9725–9734, 2023.
P. Weraman, I. P. Agus, and D. Hita, “Kemampuan Calistung Dan Motivasi Belajar,” vol. 4, no. 2, pp. 1234–1239, 2023.
L. Latifah and F. P. Rahmawati, “Penerapan Program CALISTUNG untuk Meningkatkan Literasi Numerasi Siswa Kelas Rendah di Sekolah Dasar,” J. Basicedu, vol. 6, no. 3, pp. 5021–5029, 2022, doi: 10.31004/basicedu.v6i3.3003.
J. Jumrodah, M. Oktaviany, D. Amelia Safitri, U. Amalia, Y. Yunita, and L. Safitri, “Penerapan Model Pembelajaran Calistung di Rumah Pintar Sebagai Upaya Pendidikan Anak-Anak di Desa Walur,” J. Pengabdi. Kpd. Masy. Nusant., vol. 5, no. 2, pp. 2442–2450, 2024, doi: 10.55338/jpkmn.v5i2.3201.
A. Safitri, H. Y. Ayyasy, H. Purba, M. B. Winanda, and ..., “Upaya Peningkatan Kemampuan Calistung Siswa Kelas I Sd Negeri 106224 Desa Kerapuh,” Pedamas …, vol. 2, pp. 293–299, 2024
S. Wahyuni, S. Syamsuyurnita, D. Kesuma, and ..., “Peningkatan Kemampuan Literasi Numerasi Melalui Program Calistung Di Sanggar Bimbingan Kampung Bharu Kuala Lumpur, Malaysia,” Innov. J. …, vol. 3, pp. 1652–1662, 2023
L. Juliasih, G. Sya’ban Maulana, S. Rahmawati, and L. Siti Muslimah, “Pendampingan Siswa Melalui Metode Calistung di Desa Mekarsari Kecamatan Mekarmukti Kabupaten Garut,” Bantenese J. Pengabdi. Masy., vol. 6, no. 1, pp. 1–8, 2024, doi: 10.30656/ps2pm.v6i1.7782.
R. A. Ananda, “Clustering Menggunakan Algoritma K-Means untuk Mengelompokan Data Perjudian Berdasarkan Wilayah di Kota Binjai ( Studi Kasus?: Pengadilan Negeri Binjai ),” Jurnal Sains dan Teknologi Informasi, vol 2, no. 4, 2024.
H. Hairani and H. A. Id, “Pelatihan Implementasi Machine Learning Pada Bidang Pendidikan,” J. Pengabdi. dan Pemberdaya. Masy. Tahun, vol. 2, no. 2, pp. 305–310, 2022, doi: 10.30821/adma.v2i2.xxxx.
A. Asmana, Y. Arie Wijaya, and M. Martanto, “Clustering Data Calon Siswa Baru Menggunakan Metode K-Means Di Sekolah Menengah Kejuruan Wahidin Kota Cirebon,” JATI (Jurnal Mhs. Tek. Inform., vol. 6, no. 2, pp. 552–559, 2022, doi: 10.36040/jati.v6i2.5236.
Dewi Eka Putri and Eka Praja Wiyata Mandala, “Hybrid Data Mining berdasarkan Klasterisasi Produk untuk Klasifikasi Penjualan,” J. KomtekInfo, vol. 9, pp. 68–73, 2022, doi: 10.35134/komtekinfo.v9i2.279.
A. E. Wibowo and T. Habanabakize, “K-Means Clustering untuk Klasifikasi Standar Kualifikasi Pendidikan dan Pengalaman Kerja Guru SMK di Indonesia,” J. Din. Vokasional Tek. Mesin, vol. 7, no. 2, pp. 152–163, 2022, doi: 10.21831/dinamika.v7i2.53848.
A. Premana, O. Saeful Bachri, and A. Pandhu Wijaya, “Klasifikasi Jenis Mangga Apel Menggunakan Metode K-Means Klustering,” J. Tek. Indones., vol. 1, no. 1, pp. 16–25, 2022, doi: 10.58860/jti.v1i1.1.
A. Of et al., “Penerapan K-Means Clustering Untuk Mengelompokan Performa Siswa Dalam Pelajaran Bahasa Indonesia,” SATI Sustain. Agric. Technol. Innov., pp. 510–522, 2024.
R. Fauziah and A. I. Purnamasari, “Implementasi Algoritma K-Means pada Kasus Kekerasan Anak dan Perempuan Berdasarkan Usia,” Hello World J. Ilmu Komput., vol. 2, no. 1, pp. 34–41, 2023, doi: 10.56211/helloworld.v2i1.232.
F. Andini, D. Zilfitri, Y. Filki, and M. Ridho, “Algoritma K-Means Clustering dalam Optimalisasi Komposisi Pakan Ternak Ayam Petelur,” J. Sistim Inf. dan Teknol., vol. 5, pp. 44–48, 2022, doi: 10.37034/jsisfotek.v5i2.168.
A. Rudiyan, A. E. Dzulkifli, and K. Munazar, “Klasifikasi Kebakaran Hutan Menggunakan Metode K-Nearest Neighbor?: Studi Kasus Hutan Provinsi Kalimantan Barat,” JTIM J. Teknol. Inf. dan Multimed., vol. 3, no. 4, pp. 195–202, 2022, doi: 10.35746/jtim.v3i4.177.
U. Muslim and N. Al Washliyah, “HYBRID LEARNING SEBAGAI METODE PEMBELAJARAN LITERASI DI MASA PANDEMI Fita Fatria 1), Tiflatul Husna 2),” Prosiding Seminar Nasional Hasil Pengabdian, no. 1, pp. 83–88, 2022, [Online]. Available: https://sevima.com/apa-perbedaan-blended-learning-dan-
Fadil Danu Rahman, M. I. Z. Mulki, and A. Taryana, “Clustering Dan Klasifikasi Data Cuaca Cilacap Dengan Menggunakan Metode K-Means Dan Random Forest,” J. SINTA Sist. Inf. dan Teknol. Komputasi, vol. 1, no. 2, pp. 90–97, 2024, doi: 10.61124/sinta.v1i2.15.
R. Zulfiqri, B. N. Sari, T. N. Padilah, U. S. Karawang, and T. Timur, “ANALISIS SENTIMEN ULASAN PENGGUNA APLIKASI MEDIA SOSIAL INSTAGRAM PADA SITUS GOOGLE PLAY STORE MENGGUNAKAN NAÏVE BAYES CLASSIFIER,” vol. 12, no. 3, p. 9, 2024, [Online]. Available: http://dx.doi.org/10.23960/jitet.v12i3.4995%0AANALISIS
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Metode Hybrid Dalam Pengelompokkan Kemampuan Calistung Siswa Berbasis Machine Learning
ARTICLE HISTORY
Issue
Section
Copyright (c) 2025 Amanda Salsabila, Andri Anto Tri Susilo, Nelly Khairani Daulay

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).