Prediksi Padi Menggunakan Algoritma Long Short Term Memory
DOI:
https://doi.org/10.47065/jimat.v5i2.496Keywords:
Forecasting; Rice; Long Short Term Memory; Mean Absolute Percentage Error; Time SeriesAbstract
Rice is one of the main agricultural commodities in Indonesia, including in Lubuklinggau City, which is a rice-producing area in South Sumatra Province. However, rice production fluctuates every month due to various factors such as planting seasons, land conversion, weather, and pest attacks. This instability can affect food availability and farmer welfare. Therefore, rice production forecasting is important in supporting better decision-making in the agricultural sector. This study uses monthly rice production data from January 2019 to November 2024 obtained from the Lubuklinggau City Agriculture Service. The method used is Long Short-Term Memory (LSTM), which is one of the artificial neural network techniques based on time series data. The optimal parameters used in the model are the number of neurons in the hidden layer of 35, a batch size of 12, and a maximum of 50 epochs. The results showed that the model with optimal parameters produced a Mean Absolute Percentage Error (MAPE) value of 4.44%, which is included in the very good category. These results indicate that the LSTM method can be used effectively to predict rice production in Lubuklinggau City with a high level of accuracy.
Downloads
References
J. H. Galitan, F. Duko, and F. Hatim, “Analisis Produksi Padi Di Indonesia: Indonesia,” Innovative: Journal Of Social Science Research, vol. 4, no. 2, pp. 7281–7301, 2024.
N. Meidiana and A. Marhaeni, “Pengaruh kepemilikan aset, ketersediaan infrastruktur, dan pendidikan terhadap pendapatan dan kesejahteraan rumah tangga miskin,” Buletin Studi Ekonomi, vol. 24, no. 1, 2019.
R. Rahim et al., “Dinamika Ketahanan Pangan: Analisis Pengaruh Luas Panen Padi, Konsumsi Beras, Harga Beras, dan Jumlah Penduduk Terhadap Produksi Padi di Wilayah Sentra Padi di Indonesia Tahun 2017-2021,” Innovative: Journal Of Social Science Research, vol. 4, no. 3, pp. 17083–17093, 2024.
P. D. Wijayanti, Harianto, and A. Suryana, “Permintaan Pangan Sumber Karbohidrat di Indonesia. Analisis Kebijakan Pertanian,” Analisa Kebijakan Pertanian, vol. 17, pp. 13–26, 2019.
F. Husaini, I. Permana, M. Afdal, and F. N. Salisah, “Penerapan Algoritma Long Short-Term Memory untuk Prediksi Produksi Kelapa Sawit,” MALCOM: Indonesian Journal of Machine Learning and Computer Science, vol. 4, no. 2, pp. 366–374, Feb. 2024, doi: 10.57152/malcom.v4i2.1187.
F. Febriansyah, A. Sujjada, and F. Sembiring, “Prediksi Harga Bitcoin Menggunakan Algoritma Long Short Term Memory (LSTM),” INOVTEK Polbeng - Seri Informatika, vol. 9, no. 1, Jun. 2024, doi: 10.35314/isi.v9i1.4247.
S. Hidayatullah and A. Cherid, “Prediksi Temperatur Cuaca di Negara Norwegia Menggunakan Metode LSTM,” SIMKOM, vol. 8, no. 2, pp. 187–198, Aug. 2023, doi: 10.51717/simkom.v8i2.192.
L. Wiranda and M. Sadikin, “Penerapan Long Short Term Memory Pada Data Time Series Untuk Memprediksi Penjualan Produk Pt. Metiska Farma.” 2019
S. P. Simanjuntak, S. S. Berutu, and G. C. Setyawan, “Implementasi Metode CNN Pada Klasifikasi Sentimen Terhadap Pelaksanaan Piala Dunia U-17,” Journal of Engineering and Emerging Technology, vol. 2, no. 1, pp. 23–32, 2024.
H. Sulastri and A. I. Gufroni, “Penerapan data mining dalam pengelompokan penderita thalassaemia,” Jurnal Nasional Teknologi dan Sistem Informasi, vol. 3, no. 2, pp. 299–305, 2017.
A. Dahlan, E. Utami, and E. T. Luthfi, “Perancangan Data Warehouse Perpustakaan Perguruan Tinggi XYZ Menggunakan Metode Snowflake Schema,” Respati, vol. 8, no. 24, 2013.
D. A. Nasution, H. H. Khotimah, and N. Chamidah, “Perbandingan Normalisasi Data untuk Klasifikasi Wine Menggunakan Algoritma K-NN,” Computer Engineering, Science and System Journal, vol. 4, no. 1, p. 78, Jan. 2019, doi: 10.24114/cess.v4i1.11458.
T. B. Sianturi, I. Cholissodin, and N. Yudistira, “Penerapan Algoritma Long Short-Term Memory (LSTM) berbasis Multi Fungsi Aktivasi Terbobot dalam Prediksi Harga Ethereum,” 2023. [Online]. Available: http://j-ptiik.ub.ac.id
S. J. Pipin, R. Purba, and H. Kurniawan, “Prediksi Saham Menggunakan Recurrent Neural Network (RNN-LSTM) dengan Optimasi Adaptive Moment Estimation,” J. Comput. Syst. Informatics, vol. 4, no. 4, pp. 806–815, 2023.
D. Heksaputra, “Prediksi Rerata Harga Beras Tingkat Grosir Indonesia dengan Long Short Term Memory,” JATISI (Jurnal Teknik Informatika dan Sistem Informasi), vol. 7, no. 2, pp. 163–174, 2020.
R. Vinayakumar, K. P. Soman, and P. Poornachandran, “Long short-term memory based operation log anomaly detection,” in 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI), 2017, pp. 236–242. doi: 10.1109/ICACCI.2017.8125846.
F. A. Nugraha, N. H. Harani, and R. Habibi, Analisis Sentimen Terhadap Pembatasan Sosial Menggunakan Deep Learning. Kreatif, 2020.
A. Krisma, M. Azhari, and P. P. Widagdo, “Perbandingan metode double exponential smoothing dan triple exponential smoothing dalam parameter tingkat error mean absolute percentage error (mape) dan means absolute deviation (mad),” in Prosiding Seminar Nasional Ilmu Komputer dan Teknologi Informasi, 2019.
I. Nabillah and I. Ranggadara, “Mean Absolute Percentage Error untuk Evaluasi Hasil Prediksi Komoditas Laut,” JOINS (Journal of Information System), vol. 5, no. 2, pp. 250–255, Nov. 2020, doi: 10.33633/joins.v5i2.3900.
S. Wardah and I. Iskandar, “Analisis Peramalan Penjualan Produk Keripik Pisang Kemasan Bungkus (Studi Kasus?: Home Industry Arwana Food Tembilahan),” J@ti Undip?: Jurnal Teknik Industri, vol. 11, no. 3, p. 135, Jan. 2017, doi: 10.14710/jati.11.3.135-142.
A. B. Wibowo and D. Rukmayadi, “Requirement Planning (Mrp) Method For Cake Products In ‘Q’ Company” 2020
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Prediksi Padi Menggunakan Algoritma Long Short Term Memory
ARTICLE HISTORY
Issue
Section
Copyright (c) 2025 Putri Cheria Adhany, Cindi Wulandari, Bunga Intan, Budi Santoso

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).