Pemilihan Fitur Menggunakan Chi-Square Untuk Deteksi Serangan Pada Jaringan Internet of Medical Things Menggunakan Random Forest
DOI:
https://doi.org/10.47065/jimat.v5i2.478Keywords:
IoMT; CICIoMT2024; Chi-SquareAbstract
This research discusses the security of the Internet of Medical Things (IoMT) network using the CICIoMT2024 dataset to analyze and detect cyber attacks through the application of Machine Learning (ML) methods. This research uses the Chi-Square feature selection technique to identify important features, and uses the Random Forest algorithm for the data classification process. The utilization of Chi-Square features, especially in the analysis of network traffic of IoT devices, has not been widely explored, so this research makes a new contribution to the field. The result of the Chi-Square feature selection are used to train Machine Learning models to classify data between normal traffic and traffic containing attacks. In the experiments conducted, the Random Forest algorithm showed excellent performance by achieving up to 100% accuracy, as well as high precision, recall, F1-Score values. These results show that Random Forest is able to handle the complexity of IoMT data effectively. Thus, it can be concluded that the Random Forest algorithm is very relevant and effective to use in IoMT network security research.
Downloads
References
A. Jalil, A. Homaidi, and Z. Fatah, “Implementasi Algoritma Support Vector Machine Untuk Klasifikasi Status Stunting Pada Balita,” G-Tech: Jurnal Teknologi Terapan, vol. 8, no. 3, pp. 2070–2079, Jul. 2024, doi: 10.33379/gtech.v8i3.4811.
G. Sultan Aljumaie, G. Hisham Alzeer, R. Khaild Alghamdi, H. Alsuwat, and E. Alsuwat, “Modern Study on Internet of Medical Things (IOMT) Security,” IJCSNS International Journal of Computer Science and Network Security, vol. 21, no. 8, p. 254, 2021, doi: 10.22937/IJCSNS.2021.21.8.34.
G. Thamilarasu, A. Odesile, and A. Hoang, “An intrusion detection system for internet of medical things,” IEEE Access, vol. 8, pp. 181560–181576, 2020, doi: 10.1109/ACCESS.2020.3026260.
S. BALARAMAN, “Comparison of Classification Models for Breast Cancer Identification using Google Colab,” May 20, 2020. doi: 10.20944/preprints202005.0328.v1.
J. Nayak, S. K. Meher, A. Souri, B. Naik, and S. Vimal, “Extreme learning machine and bayesian optimization-driven intelligent framework for IoMT cyber-attack detection,” Journal of Supercomputing, vol. 78, no. 13, pp. 14866–14891, Sep. 2022, doi: 10.1007/s11227-022-04453-z.
M. Mukhopadhyay, S. Banerjee, and C. Das Mukhopadhyay, “Internet of Medical Things and the Evolution of Healthcare 4.0: Exploring Recent Trends,” Journal of Electronics, Electromedical Engineering, and Medical Informatics, vol. 6, no. 2, pp. 182–194, Apr. 2024, doi: 10.35882/jeeemi.v6i2.402.
M. Labib Mu’tashim et al., “Klasifikasi Ketepatan Lama Studi Mahasiswa Dengan Algoritma Random Forest Dan Gradient Boosting (Studi Kasus Fakultas Ilmu Komputer Universitas Pembangunan Nasional Veteran Jakarta),” 2023.
M. Eki Riyadani, “Sistem Keamanan Untuk Otorisasi Pada Smart Home Menggunakan Pengenalan Wajah Dengan Library OpenCV.”, J. Sistem Komputer dan Kecerdasan Buatan, vol 5, no 2, 2022
A. F. Amiri, H. Oudira, A. Chouder, and S. Kichou, “Faults detection and diagnosis of PV systems based on machine learning approach using random forest classifier,” Energy Convers Manag, vol. 301, Feb. 2024, doi: 10.1016/j.enconman.2024.118076.
S. Dadkhah et al., “CICIoMT2024: Attack Vectors in Healthcare devices-A Multi-Protocol Dataset for Assessing IoMT Device Security,” 2024, doi: 10.20944/preprints202402.0898.v1.
J. Rafapa and A. Konokix, “Ransomware Detection Using Aggregated Random Forest Technique with Recent Variants,” 2024, doi: 10.22541/au.172426891.14153527/v1.
U. Tariq, I. Ullah, M. Yousuf Uddin, and S. J. Kwon, “An Effective Self-Configurable Ransomware Prevention Technique for IoMT,” Sensors, vol. 22, no. 21, Nov. 2022, doi: 10.3390/s22218516.
S. E. Ali, N. Tariq, F. A. Khan, M. Ashraf, W. Abdul, and K. Saleem, “BFT-IoMT: A Blockchain-Based Trust Mechanism to Mitigate Sybil Attack Using Fuzzy Logic in the Internet of Medical Things,” Sensors, vol. 23, no. 9, May 2023, doi: 10.3390/s23094265.
A. Fahad Rasheed, M. Zarkoosh, S. Sabah Al-Azzawi, “The Impact of Feature Selection on Malware Classification Using Chi-Square and Machine,” 2023, doi: 10.1109/ICCCE58854.2023.10246084ï.
W. B. Santosa, A. Syukur, and P. Purwanto, “Pemilihan Fitur Menggunakan Algoritma Chi-Square Dan Particle Swarm Optimization (PSO) Untuk Meningkatkan Kinerja Deep Neural Network Pada Deteksi Penyakit Diabetes,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 8, no. 1, p. 488, Jan. 2024, doi: 10.30865/mib.v8i1.7277.
E. Hariyanti, D. Pramana Hostiadi, Y. Priyo Atmojo, I. Made Darma Susila, and I. Tangkawarow, “Analisis Perbandingan Metode Seleksi Fitur pada Model Klasifikasi Decission Tree untuk Deteksi Serangan di Jaringan Komputer” Jurnal Sistem dan Informatika (JSI), vol 18, no 2, 2024
D. Upadhyay, J. Manero, M. Zaman, and S. Sampalli, “Gradient Boosting Feature Selection with Machine Learning Classifiers for Intrusion Detection on Power Grids,” IEEE Transactions on Network and Service Management, vol. 18, no. 1, pp. 1104–1116, Mar. 2021, doi: 10.1109/TNSM.2020.3032618.
R. Hireche, H. Mansouri, and A. S. K. Pathan, “Security and Privacy Management in Internet of Medical Things (IoMT): A Synthesis,” Multidisciplinary Digital Publishing Institute (MDPI), 2022, doi: 10.3390/jcp2030033.
J. G. Lugo-Armenta and L. R. Pino-Fan, “An approach to inferential reasoning levels on the Chi-square statistic,” Eurasia Journal of Mathematics, Science and Technology Education, vol. 20, no. 1, pp. 1–19, 2024, doi: 10.29333/EJMSTE/14119.
A. Habiba, R. R. Isnanto, and J. E. Suseno, “The Effect of Chi Square Feature Selection on the Naïve Bayes Algorithm on the Analysis of Indonesian Society’s Sentiment About Face-to-Face Learning During the Covid-19 Pandemic,” JST (Jurnal Sains dan Teknologi), vol. 12, no. 1, Mar. 2023, doi: 10.23887/jstundiksha.v12i1.51899.
C. T. Nnodim, O. M. Arowolo, A. A. Ajani, S. N. Okhuegbe, B. D. Agboola, and C. O. Osueke, “Emerging Advances in the Internet of Things (IoT) Technology for Fast Response to Covid-19 Outbreak With ANOVA-K-NN Implementation.” 2021
A. Zalukhu et al., “PERANGKAT LUNAK APLIKASI PEMBELAJARAN FLOWCHART,” Jurnal Teknologi Informasi dan Industri, vol. 4, no. 1, 2023.
S. Bani Hani and M. Ahmad, “Predicting mortality amongst Jordanian men with heart attacks using the chi-square automatic interaction detection model,” Health Informatics J, vol. 30, no. 3, Jul. 2024, doi: 10.1177/14604582241270830.
W. B. Santosa, A. Syukur, and P. Purwanto, “Pemilihan Fitur Menggunakan Algoritma Chi-Square Dan Particle Swarm Optimization (PSO) Untuk Meningkatkan Kinerja Deep Neural Network Pada Deteksi Penyakit Diabetes,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 8, no. 1, p. 488, Jan. 2024, doi: 10.30865/mib.v8i1.7277.
U. Tariq, I. Ullah, M. Yousuf Uddin, and S. J. Kwon, “An Effective Self-Configurable Ransomware Prevention Technique for IoMT,” Sensors, vol. 22, no. 21, Nov. 2022, doi: 10.3390/s22218516.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Pemilihan Fitur Menggunakan Chi-Square Untuk Deteksi Serangan Pada Jaringan Internet of Medical Things Menggunakan Random Forest
ARTICLE HISTORY
Issue
Section
Copyright (c) 2025 Alfia Tiara Permatasari, Rusdiyanto, M Agus Syamsul Arifin

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).