Pemodelan dan Prediksi Tingkat Pengangguran Menggunakan Pendekatan Hibrida GARCH dan BSTS


Authors

  • Ade Priyatna Universitas Bina Sarana Informatika, Jakarta, Indonesia
  • Eva Zuraidah Universitas Bina Sarana Informatika, Jakarta, Indonesia
  • Besus Maula Sulthon Universitas Bina Sarana Informatika, Jakarta, Indonesia
  • Oky Kurniawan Universitas Bina Sarana Informatika, Jakarta, Indonesia

DOI:

https://doi.org/10.47065/jimat.v5i3.699

Keywords:

Unemployment; GARCH Model; Bayesian Structural Time Series (BSTS); Unemployment Volatility; Time Series Analysis

Abstract

This study aims to understand and predict the unemployment rate patterns based on educational background in Indonesia between 1986 and 2024, with a focus on university graduates. The data, which was initially complex, was successfully processed into a format ready for time series analysis, and the GARCH (Generalized Autoregressive Conditional Heteroskedasticity) model was applied to measure the volatility of unemployment. The evaluation results show that the GARCH model's assumption regarding the stability of the average unemployment rate is inaccurate, as evidenced by the large error values (RMSE 283209.26 and MAE 246252.37), indicating that this model does not fully capture the fluctuations in unemployment. The average coefficient (mu) is 436.50, and the log-likelihood is -284.05, with conditional volatility forecast values ranging from approximately 1.91e+11 to 2.79e+11. The Bayesian Structural Time Series (BSTS) model was also applied to decompose the data into long-term trend components and seasonal patterns, providing a clearer picture of unemployment movement. However, technical constraints in the implementation of BSTS using TensorFlow Probability resulted in predictions not being completed. Nevertheless, this analysis shows that the unemployment rate of university graduates is highly volatile, and improvements in the GARCH model, as well as resolution of the technical constraints in the BSTS model, are crucial for generating more accurate and reliable predictions.

Downloads

Download data is not yet available.

References

D. Tridayanti, I. Lili Rahma, A. Nainul Amani, G. Masitoh, and J. Baru Sukaraja Kec Buay Madang Kab Oku Timut, “Peran Ekonometrika dalam Perencanaan Pembangunan Daerah,” Jurnal Ekonomi dan Keuangan, vol. 3, pp. 74–94, Apr. 2025, doi: 10.61132/moneter.v3i3.1393.

W. R. Amalia, “PENERAPAN MODEL ARCH/GARCH DALAM ANALISIS VOLATILITAS HARGA TUKAR RUPIAH TERHADAP USD MENGGUNAKAN DATA PERIODE JANUARI 2008 – AGUSTUS 2023,” Skripsi, UNIVERSITAS ISLAM INDONESIA, Yogyakarta, 2023.

A. Mutiara, “ANALISIS PREDIKSI INFLASI DI INDONESIA: PERBANDINGAN MODEL ARIMA-GARCH DAN LONG SHORT TERM MEMORY (LSTM),” Skripsi, UIN Syarif Hidayatullah, Jakarta, 2024.

A. B. D. A. W. P. R. SUMIYATI, “METODE ARCH/GARCH UNTUK MEMPREDIKSI HUBUNGAN ECONOMIC UNCERTAINTY (COVID 19) DAN VOLATILITAS SAHAM,” Jurnal Bisnis dan Akuntansi, vol. 24, no. 1, pp. 117–130, Jun. 2022, [Online]. Available: http://jurnaltsm.id/index.php/JBA

H. Nabilah, N. Effendi, A. F. Priyono, K. Kunci, and M. E. Terapan, “E-JURNAL EKONOMI DAN BISNIS UNIVERSITAS UDAYANA PREDIKSI INDIKATOR MAKRO EKONOMI INDONESIA PASCA PANDEMI COVID-19 MENGGUNAKAN ANALISIS INTERVENSI,” Jurnal Ekonomi dan Bisnis Universitas Udayana, vol. Vol 12, no. 4, pp. 646–665, Apr. 2023, [Online]. Available: https://ojs.unud.ac.id/index.php/EEB/index

J. J. Pangaribuan, F. Fanny, O. P. Barus, and R. Romindo, “Prediksi Penjualan Bisnis Rumah Properti Dengan Menggunakan Metode Autoregressive Integrated Moving Average (ARIMA),” Jurnal Sistem Informasi Bisnis, vol. 13, no. 2, pp. 154–161, Oct. 2023, doi: 10.21456/vol13iss2pp154-161.

F. F. Mojtahedi, N. Yousefpour, S. H. Chow, and M. Cassidy, “Deep Learning for Time Series Forecasting: Review and Applications in Geotechnics and Geosciences,” Archives of Computational Methods in Engineering, Feb. 2025, doi: 10.1007/s11831-025-10244-5.

K. C. PRADANA, “ANALISIS DERET WAKTU UNTUK PREDIKSI GEMPA BUMI DI PROVINSI LAMPUNG MENGGUNAKAN METODE AUTOREGRESSIVE INTEGRATED MOVING AVERAGE (ARIMA),” Skripsi, UNIVERSITAS ISLAM NEGERI, Lampung, 2021.

ISRAN K. HASAN dan NURWAN, “PENERAPAN-MODEL-ARFIMA-GARCH-MENGGUNAKAN-VARIASI-ESTIMASI-PARAMETER-PEMBEDA-D-UNTUK-MERAMALKAN-HARGA-EMAS,” Gorontalo, 2023.

N. D. L. Imani, T. Tarno, and B. A. Saputra, “PREDIKSI HARGA DAGING SAPI DI KABUPATEN BREBES MENGGUNAKAN PEMODELAN ARFIMA DENGAN EFEK GARCH,” Jurnal Gaussian, vol. 12, no. 4, pp. 570–580, Jul. 2024, doi: 10.14710/j.gauss.12.4.570-580.

M. Ningsih, “Prediksi Harga Saham Harian PT BTPN Syariah Tbk Menggunakan Model Arima dan Model Garch,” Jurnal Ilmiah Ekonomi Islam, vol. 7, no. 03, pp. 1573–1580, 2021, doi: 10.29040/jiei.v7i3.2795.

S. Hariyanto, S. G. Wibawa, and Solikhin, “PM10 AIR QUALITY INDEX MODELING USING ARFIMA-GARCH METHOD: BUNDARAN HI AREA OF DKI JAKARTA PROVINCE,” Barekeng, vol. 18, no. 4, pp. 2165–2180, Oct. 2024, doi: 10.30598/barekengvol18iss4pp2165-2180.

N. Srivastava, T. Lamba, and M. Agarwal, “Comparative Analysis of Different Machine Learning Techniques,” Communications in Computer and Information Science, vol. 1206 CCIS, no. April, pp. 245–255, Apr. 2020, doi: 10.1007/978-981-15-4451-4_19.

A. Santoso, A. I. Purnamasari, and I. Ali, “PREDIKSI HARGA BERAS MENGGUNAKAN METODE RECURRENT NEURAL NETWORK DAN LONG SHORT-TERM MEMORY,” Jurnal PROSISKO, vol. Vol 11, Mar. 2024.

M. I. Rizki, T. A. Taqiyyuddin, P. F. Rahmah, and A. E. Hasana, “Penerapan Model ARCH/GARCH untuk Memprediksi Harga Saham Perusahaan Tokai Carbon,” Jurnal Sains Matematika dan Statistika, vol. 7, no. 2, Aug. 2021, doi: 10.24014/jsms.v7i2.13138.

D. Nugroho, O. Dimitrio, and F. Tita, “The GARCH-X(1,1) Model with Exponentially Transformed Exogenous Variables,” JST (Jurnal Sains dan Teknologi), vol. 12, no. 1, Mar. 2023, doi: 10.23887/jstundiksha.v12i1.50714.

A. R. Hafizhah, D. A. I. Maruddani, and R. Santoso, “PERBANDINGAN METODE EXPONENTIAL GARCH (EGARCH) DAN GLOSTEN-JAGANNATHAN-RUNKLE GARCH (GJR-GARCH) PADA MODEL VOLATILITAS SAHAM TUNGGAL,” Jurnal Gaussian, vol. 13, no. 1, pp. 199–209, Oct. 2024, doi: 10.14710/j.gauss.13.1.199-209.

H. A. Hamza and M. J. Mohammad, “A Comparison Of The Bayesian Structural Time Series Technique With The Autoregressive Integrated Moving Average Model For Forecasting,” Migration Letters, vol. Vol 21, no. S4, pp. 528–538, 2024, [Online]. Available: www.migrationletters.com

I. Suciati and M. Usman, “Bayesian Structural Time Series Model for Forecasting the Composite Stock Price Index in Indonesia,” Journal of Statistics, Probability, and Its Application, vol. Vol 1, no. 2, pp. 74–83, Jul. 2023, Accessed: Jul. 23, 2025. [Online]. Available: https://scholar.ummetro.ac.id/index.php/sciencestatistics/index

M. Muizzadin, Mohammad Idhom, and A. T. Damaliana, “Implementation of Bayesian Structural Time Series (BSTS) Method for Predicting Traditional Market Revenue Achievement in Surabaya,” Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics, vol. 7, no. 2, pp. 321–330, Apr. 2025, doi: 10.35882/ijeeemi.v7i2.82.

M. Khan and U. Khan, “Comparison of Forecasting Performance with VAR vs. ARIMA Models Using Economic Variables of Bangladesh,” Asian Journal of Probability and Statistics, pp. 33–47, Dec. 2020, doi: 10.9734/ajpas/2020/v10i230243.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Pemodelan dan Prediksi Tingkat Pengangguran Menggunakan Pendekatan Hibrida GARCH dan BSTS

Dimensions Badge

ARTICLE HISTORY

Published: 2025-07-26

Abstract View: 87 times
PDF Download: 59 times

Issue

Section

Articles