Analisis Performa Algoritma Machine Learning Untuk Identifikasi Depresi Pada Mahasiswa


Authors

  • Mutia Fadhilla Universitas Islam Riau, Pekanbaru, Indonesia
  • Rizky Wandri Universitas Islam Riau, Pekanbaru, Indonesia
  • Anggi Hanafiah Universitas Islam Riau, Pekanbaru, Indonesia
  • Panji Rachmat Setiawan Universitas Islam Riau, Pekanbaru, Indonesia
  • Yudhi Arta Universitas Islam Riau, Pekanbaru, Indonesia
  • Suandi Daulay Sekolah Tinggi Teknologi Pekanbaru, Pekanbaru, Indonesia

DOI:

https://doi.org/10.47065/jimat.v5i1.473

Keywords:

Mental Health; Depression; Machine Learning; Early Detection; Diagnostic Accuracy

Abstract

Mental health, especially depression, is a major issue among college students due to academic, social, and social media pressures. Depression detection faces challenges such as stigma, low literacy, and ineffective conventional methods. Machine learning technology offers solutions with algorithms such as Naive Bayes, SVM, and Random Forest to improve detection accuracy, support early intervention, and improve the student mental health system. Mental health, especially depression, is a major issue among college students due to academic, social, and social media pressures. Depression detection faces challenges such as stigma, low literacy, and ineffective conventional methods. Machine learning technology offers solutions with algorithms such as Naive Bayes, K-Nearest Neighbor, Decision Tree, Logistic Regression, Random Forest, and Support Vector Machine to improve detection accuracy, support early intervention, and improve the student mental health system. Based on the results of the performance analysis of the machine learning algorithm, the most effective model in predicting depression status in students is Logistic Regression which has an accuracy rate of 95.62%. As a strategic step, machine learning technology can be integrated for early diagnosis of depression in students. This system is expected to be more effective and efficient, improve diagnostic accuracy, and open up opportunities for new approaches to responsive, data-driven mental health.

Downloads

Download data is not yet available.

References

M. Maulana and N. Yulianti, “Representasi Visual Kesehatan Mental Pada Film Dear David,” Bandung Conference Series Communication Management, vol. 3, no. 2, pp. 595–601, 2023, doi: 10.29313/bcscm.v3i2.7593.

N. Infanti Wisnu Wardani et al., “Psikoedukasi Peningkatan Kesadaran Kesehatan Mental Pada Masyarakat Desa Kedung Baya Kelurahan Kalitimbang Cilegon,” Jurnal Pengabdian Masyarakat Bangsa, vol. 1, no. 7, pp. 1020–1025, 2023, doi: 10.59837/jpmba.v1i7.301.

S. Budury and A. Fitriasari, “Penggunaan media sosial terhadap kejadian depresi, kecemasan dan stres pada mahasiswa: use of social media on events of depression, anxiety and stress among university students,” Bali Medika Jurnal, vol. 6, no. 2, pp. 205–208, 2019.

E. D. Farisandy, A. Asihputri, and J. S. Pontoh, “Peningkatan Pengetahuan Dan Kesadaran Masyarakat Mengenai Kesehatan Mental,” Diseminasi Jurnal Pengabdian Kepada Masyarakat, vol. 5, no. 1, pp. 81–90, 2023, doi: 10.33830/diseminasiabdimas.v5i1.5037.

S. A. Mardhiyah, “Inisiasi Mental Health Awareness Melalui Screening Dan Promosi Kesehatan Mental Pada Mahasiswa Universitas Sriwijaya,” Jurnal Pengabdian Sriwijaya, vol. 7, no. 4, pp. 906–914, 2019, doi: 10.37061/jps.v7i4.12359.

N. Ima Fitri Sholichah, N. Laily, and F. Zahra, “Pentingnya Kesehatan Mental Bagi Remaja Karang Taruna Di Desa Cemer Lor Kabupaten Gresik,” Room of Civil Society Development, vol. 2, no. 5, pp. 194–201, 2023, doi: 10.59110/rcsd.213.

A. F. Ratrin, W. Wilson, and M. I. Ilmiawan, “Hubungan Antara Chronotype Dengan Tingkat Gejala Depresi Pada Mahasiswa Kedokteran Tingkat Pertama Di Fakultas Kedokteran Universitas Tanjungpura,” Jurnal Cerebellum, vol. 6, no. 3, p. 66, 2021, doi: 10.26418/jc.v6i3.45311.

V. Isella, A. Chris, and L. Valdo, “Pencapaian Akademik Mempengaruhi Depresi Pada Mahasiswa Tahun Pertama Di Fakultas Kedokteran,” Jurnal Muara Medika Dan Psikologi Klinis, vol. 2, no. 2, pp. 97–103, 2022, doi: 10.24912/jmmpk.v2i2.22658.

N. H. Ma’rufa, A. N. Rumaisha, and F. Nashori, “Pengaruh Terapi Zikir Istigfar Terhadap Depresi Pada Mahasiswa,” Psychopolytan Jurnal Psikologi, vol. 7, no. 1, pp. 52–61, 2023, doi: 10.36341/psi.v7i1.3319.

D. Nazira, M. Mawarpury, A. Afriani, and I. D. Kumala, “Literasi Kesehatan Mental Pada Mahasiswa Di Banda Aceh,” Seurune Jurnal Psikologi Unsyiah, vol. 5, no. 1, pp. 23–39, 2022, doi: 10.24815/s-jpu.v5i1.25102.

M. P. Yanti and N. R. Nurwulan, “Pengaruh Pembelajaran Daring Pada Depresi, Stres, Dan Kecemasan Mahasiswa,” Jurnal Muara Pendidikan, vol. 6, no. 1, pp. 58–63, 2021, doi: 10.52060/mp.v6i1.520.

I. B. Al Basith and L. S. Budiarso, “Pengaruh Pembelajaran Jarak Jauh (Pjj) Terhadap Kesehatan Mental Pada Mahasiswa Fakultas Kedokteran Universitas Tarumanagara Angkatan X,” Jurnal Muara Medika Dan Psikologi Klinis, vol. 2, no. 2, pp. 149–158, 2022, doi: 10.24912/jmmpk.v2i2.24595.

E. Y. Harahap, Y. Septianingrum, L. Wijayanti, U. Sholeha, and S. N. Hasina, “Depresi Pasca Stroke (PSD): A Systematic Review,” Jurnal Keperawatan, vol. 15, no. 2, pp. 859–866, 2023, doi: 10.32583/keperawatan.v15i2.1026.

S. Abimanyu, N. Bahtiar, and E. Adi Sarwoko, “Implementasi Metode Support Vector Machine (SVM) Dan T-Distributed Stochastic Neighbor Embedding (T-Sne) Untuk Klasifikasi Depresi,” Jurnal Masyarakat Informatika, vol. 14, no. 2, pp. 146–158, 2023, doi: 10.14710/jmasif.14.2.59513.

S. R. Hernawan, H. A. Nugroho, and I. Hidayah, “Penerapan Metode Certainty Factor Dalam Diagnosis Gangguan Depresi,” Journal of Computer System and Informatics (Josyc), vol. 3, no. 2, pp. 65–72, 2022, doi: 10.47065/josyc.v3i2.643.

D. Shin et al., “Detection of Minor and Major Depression Through Voice as a Biomarker Using Machine Learning,” J Clin Med, vol. 10, no. 14, p. 3046, 2021, doi: 10.3390/jcm10143046.

S. Nuarini, N. Siti Fauziah, N. A. Mayangky, and R. Nurfalah, “Comparison Algorithm on Machine Learning for Student Mental Health Data,” Journal Medical Informatics Technology, pp. 81–85, 2023, doi: 10.37034/medinftech.v1i3.18.

S. Masrom, N. F. Jamaludin, F. Abdol Razak, and N. R. Paujah @ Ismail, “Machine Learning Approach to Classify Students’ Mental Health During the COVID-19 Pandemic: A Web-Based Interactive Dashboard,” International Journal of Academic Research in Business and Social Sciences, vol. 13, no. 7, 2023, doi: 10.6007/ijarbss/v13-i7/17124.

N. Jagtap, H. Shukla, V. Shinde, S. Desai, and V. Kulkarni, “Use of Ensemble Machine Learning to Detect Depression in Social Media Posts,” pp. 1396–1400, 2021, doi: 10.1109/icesc51422.2021.9532838.

J. Wilson A R. and S. K. K, “Early Detection of Anxiety, Depression and Stress Among Potential Patients Using Machine Learning and Deep Learning Models,” 2023, doi: 10.1109/iccsc56913.2023.10143026.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Analisis Performa Algoritma Machine Learning Untuk Identifikasi Depresi Pada Mahasiswa

Dimensions Badge

ARTICLE HISTORY

Published: 2025-01-30

Abstract View: 15 times
PDF Download: 12 times

Issue

Section

Articles

Most read articles by the same author(s)