Analisis Performa Algoritma Machine Learning Untuk Identifikasi Depresi Pada Mahasiswa
DOI:
https://doi.org/10.47065/jimat.v5i1.473Keywords:
Mental Health; Depression; Machine Learning; Early Detection; Diagnostic AccuracyAbstract
Mental health, especially depression, is a major issue among college students due to academic, social, and social media pressures. Depression detection faces challenges such as stigma, low literacy, and ineffective conventional methods. Machine learning technology offers solutions with algorithms such as Naive Bayes, SVM, and Random Forest to improve detection accuracy, support early intervention, and improve the student mental health system. Mental health, especially depression, is a major issue among college students due to academic, social, and social media pressures. Depression detection faces challenges such as stigma, low literacy, and ineffective conventional methods. Machine learning technology offers solutions with algorithms such as Naive Bayes, K-Nearest Neighbor, Decision Tree, Logistic Regression, Random Forest, and Support Vector Machine to improve detection accuracy, support early intervention, and improve the student mental health system. Based on the results of the performance analysis of the machine learning algorithm, the most effective model in predicting depression status in students is Logistic Regression which has an accuracy rate of 95.62%. As a strategic step, machine learning technology can be integrated for early diagnosis of depression in students. This system is expected to be more effective and efficient, improve diagnostic accuracy, and open up opportunities for new approaches to responsive, data-driven mental health.
Downloads
References
M. Maulana and N. Yulianti, “Representasi Visual Kesehatan Mental Pada Film Dear David,” Bandung Conference Series Communication Management, vol. 3, no. 2, pp. 595–601, 2023, doi: 10.29313/bcscm.v3i2.7593.
N. Infanti Wisnu Wardani et al., “Psikoedukasi Peningkatan Kesadaran Kesehatan Mental Pada Masyarakat Desa Kedung Baya Kelurahan Kalitimbang Cilegon,” Jurnal Pengabdian Masyarakat Bangsa, vol. 1, no. 7, pp. 1020–1025, 2023, doi: 10.59837/jpmba.v1i7.301.
S. Budury and A. Fitriasari, “Penggunaan media sosial terhadap kejadian depresi, kecemasan dan stres pada mahasiswa: use of social media on events of depression, anxiety and stress among university students,” Bali Medika Jurnal, vol. 6, no. 2, pp. 205–208, 2019.
E. D. Farisandy, A. Asihputri, and J. S. Pontoh, “Peningkatan Pengetahuan Dan Kesadaran Masyarakat Mengenai Kesehatan Mental,” Diseminasi Jurnal Pengabdian Kepada Masyarakat, vol. 5, no. 1, pp. 81–90, 2023, doi: 10.33830/diseminasiabdimas.v5i1.5037.
S. A. Mardhiyah, “Inisiasi Mental Health Awareness Melalui Screening Dan Promosi Kesehatan Mental Pada Mahasiswa Universitas Sriwijaya,” Jurnal Pengabdian Sriwijaya, vol. 7, no. 4, pp. 906–914, 2019, doi: 10.37061/jps.v7i4.12359.
N. Ima Fitri Sholichah, N. Laily, and F. Zahra, “Pentingnya Kesehatan Mental Bagi Remaja Karang Taruna Di Desa Cemer Lor Kabupaten Gresik,” Room of Civil Society Development, vol. 2, no. 5, pp. 194–201, 2023, doi: 10.59110/rcsd.213.
A. F. Ratrin, W. Wilson, and M. I. Ilmiawan, “Hubungan Antara Chronotype Dengan Tingkat Gejala Depresi Pada Mahasiswa Kedokteran Tingkat Pertama Di Fakultas Kedokteran Universitas Tanjungpura,” Jurnal Cerebellum, vol. 6, no. 3, p. 66, 2021, doi: 10.26418/jc.v6i3.45311.
V. Isella, A. Chris, and L. Valdo, “Pencapaian Akademik Mempengaruhi Depresi Pada Mahasiswa Tahun Pertama Di Fakultas Kedokteran,” Jurnal Muara Medika Dan Psikologi Klinis, vol. 2, no. 2, pp. 97–103, 2022, doi: 10.24912/jmmpk.v2i2.22658.
N. H. Ma’rufa, A. N. Rumaisha, and F. Nashori, “Pengaruh Terapi Zikir Istigfar Terhadap Depresi Pada Mahasiswa,” Psychopolytan Jurnal Psikologi, vol. 7, no. 1, pp. 52–61, 2023, doi: 10.36341/psi.v7i1.3319.
D. Nazira, M. Mawarpury, A. Afriani, and I. D. Kumala, “Literasi Kesehatan Mental Pada Mahasiswa Di Banda Aceh,” Seurune Jurnal Psikologi Unsyiah, vol. 5, no. 1, pp. 23–39, 2022, doi: 10.24815/s-jpu.v5i1.25102.
M. P. Yanti and N. R. Nurwulan, “Pengaruh Pembelajaran Daring Pada Depresi, Stres, Dan Kecemasan Mahasiswa,” Jurnal Muara Pendidikan, vol. 6, no. 1, pp. 58–63, 2021, doi: 10.52060/mp.v6i1.520.
I. B. Al Basith and L. S. Budiarso, “Pengaruh Pembelajaran Jarak Jauh (Pjj) Terhadap Kesehatan Mental Pada Mahasiswa Fakultas Kedokteran Universitas Tarumanagara Angkatan X,” Jurnal Muara Medika Dan Psikologi Klinis, vol. 2, no. 2, pp. 149–158, 2022, doi: 10.24912/jmmpk.v2i2.24595.
E. Y. Harahap, Y. Septianingrum, L. Wijayanti, U. Sholeha, and S. N. Hasina, “Depresi Pasca Stroke (PSD): A Systematic Review,” Jurnal Keperawatan, vol. 15, no. 2, pp. 859–866, 2023, doi: 10.32583/keperawatan.v15i2.1026.
S. Abimanyu, N. Bahtiar, and E. Adi Sarwoko, “Implementasi Metode Support Vector Machine (SVM) Dan T-Distributed Stochastic Neighbor Embedding (T-Sne) Untuk Klasifikasi Depresi,” Jurnal Masyarakat Informatika, vol. 14, no. 2, pp. 146–158, 2023, doi: 10.14710/jmasif.14.2.59513.
S. R. Hernawan, H. A. Nugroho, and I. Hidayah, “Penerapan Metode Certainty Factor Dalam Diagnosis Gangguan Depresi,” Journal of Computer System and Informatics (Josyc), vol. 3, no. 2, pp. 65–72, 2022, doi: 10.47065/josyc.v3i2.643.
D. Shin et al., “Detection of Minor and Major Depression Through Voice as a Biomarker Using Machine Learning,” J Clin Med, vol. 10, no. 14, p. 3046, 2021, doi: 10.3390/jcm10143046.
S. Nuarini, N. Siti Fauziah, N. A. Mayangky, and R. Nurfalah, “Comparison Algorithm on Machine Learning for Student Mental Health Data,” Journal Medical Informatics Technology, pp. 81–85, 2023, doi: 10.37034/medinftech.v1i3.18.
S. Masrom, N. F. Jamaludin, F. Abdol Razak, and N. R. Paujah @ Ismail, “Machine Learning Approach to Classify Students’ Mental Health During the COVID-19 Pandemic: A Web-Based Interactive Dashboard,” International Journal of Academic Research in Business and Social Sciences, vol. 13, no. 7, 2023, doi: 10.6007/ijarbss/v13-i7/17124.
N. Jagtap, H. Shukla, V. Shinde, S. Desai, and V. Kulkarni, “Use of Ensemble Machine Learning to Detect Depression in Social Media Posts,” pp. 1396–1400, 2021, doi: 10.1109/icesc51422.2021.9532838.
J. Wilson A R. and S. K. K, “Early Detection of Anxiety, Depression and Stress Among Potential Patients Using Machine Learning and Deep Learning Models,” 2023, doi: 10.1109/iccsc56913.2023.10143026.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Analisis Performa Algoritma Machine Learning Untuk Identifikasi Depresi Pada Mahasiswa
ARTICLE HISTORY
Issue
Section
Copyright (c) 2025 Mutia Fadhilla, Rizky Wandri, Anggi Hanafiah, Panji Rachmat Setiawan, Yudhi Arta, Suandi Daulay

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).