Optimisasi Model Deep Learning untuk Deteksi Penyakit Daun Tebu dengan Fine-Tuning MobileNetV2
DOI:
https://doi.org/10.47065/jimat.v4i4.411Keywords:
Deep Learning; Early Detection; Fine-Tuning; MobileNetV2; Sugarcane Leaf DiseaseAbstract
Sugarcane leaf diseases are a serious threat in sugarcane farming because they can significantly reduce productivity and can cause major losses in yields if not detected early. Therefore, fast and accurate disease management is needed to prevent further losses. This study aims to develop a deep learning model based on MobileNetV2 with fine-tuning techniques to effectively detect sugarcane leaf diseases. Fine-tuning is a method used to adjust the parameters of a pre-trained model on a more specific target dataset. The dataset contains images of sugarcane leaves that have been classified per class based on the type of disease. In this study, fine-tuning was performed on the MobileNetV2 architecture that had been previously trained using the sugarcane leaf dataset. The fine-tuning process was carried out by rearranging the top few layers of MobileNetV2 and adding a special classification layer to predict the class of sugarcane leaf diseases. The model was trained through two stages: initial training to obtain a baseline performance and fine-tuning by opening several layers of MobileNetV2. In the initial evaluation, the model achieved a validation accuracy of 93.12%. After fine-tuning, the accuracy increased to 95.01%, indicating that this technique was able to significantly improve disease detection capabilities. The results of this study provide important contributions in the field of agriculture, especially in supporting the sustainability of sugarcane production through artificial intelligence-based technology. The implementation of the proposed model is expected to help farmers detect diseases more quickly and take timely preventive measures, thereby reducing losses.
Downloads
References
M. Patiung, “Strategi Industrialisasi Pertanian dalam Bentuk Pembangunan Agribisnis Merupakan Solusi Mensejahterakan Rakyat,” Prosiding, pp. 201–205, 2018.
R. Elizabeth and I. S. Anugrah, “Pertanian bioindustri meningkatkan daya saing produk agroindustri dan pembangunan pertanian berkelanjutan,” Mimb. Agribisnis J. Pemikir. Masy. Ilm. Berwawasan Agribisnis, vol. 6, no. 2, p. 871, 2020.
K. Mudhoffar and L. Magriasti, “Ekonomi Politik Energi Terbarukan: Peluang dan Tantangan di Indonesia,” Multiverse Open Multidiscip. J., vol. 3, no. 1, pp. 47–52, 2024.
N. Nurdiansyah et al., “Inovasi Teknologi Briket Solusi Cerdas Untuk Pengelolaan Limbah Dan Energi Berkelanjutan,” J. Pengabdi. Masy. Bangsa, vol. 2, no. 7, pp. 2774–2780, 2024.
S. Ikhbar, C. Rusmina, and others, “Optimalisasi Energi Biomassa: Solusi Energi Terbarukan untuk Ekonomi Hijau dengan Tinjauan Finansial dan Lingkungan,” J. Serambi Eng., vol. 9, no. 3, 2024.
M. D. Wijayanti, Energi Biomassa. Bumi Aksara, 2023.
M. N. IDHAM KHOLID, “Prarancangan Pabrik $?$-Valerolactone (Gvl) dari Ampas Tebu dengan Kapasitas 15.244 Ton/Tahun.”
M. Malado et al., Pengendalian Hama dan Penyakit Tanaman Pertanian. CV. Gita Lentera, 2024.
B. Wardiman, E. Fitriyani, S. Herlyani, J. R. Ashar, N. J. Panga, and others, Pertanian Keberlanjutan. TOHAR MEDIA, 2024.
D. Sitompul, P. Lumbantobing, S. Manik, and M. S. Harefa, “Optimasi Penggunaan Bio-Pestisida sebagai Pengganti Pestisida Kimia pada Pertanian di Kec. Percut Sei Tuan, Kab. Deli Serdang,” El-Mujtama J. Pengabdi. Masy., vol. 4, no. 2, pp. 670–681, 2024.
A. M. Amarullah, M. Adiwena, and F. R. Arifin, Teknologi Budidaya dan Produksi Tanaman. Syiah Kuala University Press, 2023.
S. Agustiani, Y. T. Arifin, A. Junaidi, S. K. Wildah, and A. Mustopa, “Klasifikasi Penyakit Daun Padi menggunakan Random Forest dan Color Histogram,” vol. 10, no. 1, 2022.
K. Thilagavathi, “Detection of Diseases in Sugarcane Using Image Processing Techniques,” Biosci. Biotechnol. Res. Commun., vol. 13, no. 11, pp. 109–115, 2020, doi: 10.21786/bbrc/13.11/24.
R. Manavalan, “Efficient Detection of Sugarcane Diseases through Intelligent Approaches: A Review,” Asian J. Res. Rev. Agric., vol. 3, no. 1, pp. 174–184, 2021.
T. Huang, R. Yang, W. Huang, Y. Huang, and X. Qiao, “Detecting sugarcane borer diseases using support vector machine,” Inf. Process. Agric., vol. 5, no. 1, pp. 74–82, 2018, doi: 10.1016/j.inpa.2017.11.001.
S. Strachan, S. A. Bhuiyan, N. Thompson, N. T. Nguyen, R. Ford, and M. J. A. Shiddiky, “Latent potential of current plant diagnostics for detection of sugarcane diseases,” Curr. Res. Biotechnol., vol. 4, no. May, pp. 475–492, 2022, doi: 10.1016/j.crbiot.2022.10.002.
A. D. Syathori and L. Verona, “Faktor-faktor yang mempengaruhi produksi usahatani tanaman tebu di Desa Majangtengah Kecamatan Dampit Kabupaten Malang,” J. Agriekstensia, vol. 19, no. 2, pp. 95–103, 2020.
I. Topan Adib Amrulloh, B. Nurina Sari, and T. Nur Padilah, “Evaluasi Augmentasi Data Pada Deteksi Penyakit Daun Tebu Dengan Yolov8,” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 4, pp. 7547–7552, 2024, doi: 10.36040/jati.v8i4.10267.
?. Kundurac?o?lu and ?. Paçal, “Deep Learning-Based Disease Detection in Sugarcane Leaves: Evaluating EfficientNet Models,” J. Oper. Intell., vol. 2, no. 1, pp. 321–235, 2024, doi: 10.31181/jopi21202423.
S. Hossain et al., “Automated breast tumor ultrasound image segmentation with hybrid UNet and classification using fine-tuned CNN model,” Heliyon, vol. 9, no. 11, p. e21369, 2023, doi: https://doi.org/10.1016/j.heliyon.2023.e21369.
W. Xu et al., “A lightweight SSV2-YOLO based model for detection of sugarcane aphids in unstructured natural environments,” Comput. Electron. Agric., vol. 211, p. 107961, 2023, doi: https://doi.org/10.1016/j.compag.2023.107961.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Optimisasi Model Deep Learning untuk Deteksi Penyakit Daun Tebu dengan Fine-Tuning MobileNetV2
ARTICLE HISTORY
Issue
Section
Copyright (c) 2024 Riska Aryanti, Sarifah Agustiani, Siti Khotimatul Wildah, Yosep Tajul Arifin, Siti Marlina, Titik Misriati

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).