Model Klasifikasi Risiko Stunting Pada Balita Menggunakan Algoritma CatBoost Classifier
DOI:
https://doi.org/10.47065/bulletincsr.v4i6.373Keywords:
CatBoost Classifie; Machine Learning; Model Klasifikasi; Risiko Stunting; Variabel KategorikalAbstract
Stunting is a significant health issue in Indonesia, affecting the growth and development of young children and influenced by various complex risk factors such as nutrition, environment, and access to healthcare services. The manual process of identifying stunting risks often requires considerable time, resources, and specialized expertise from medical professionals. This study aims to develop a stunting risk classification model for young children using machine learning through the CatBoost Classifier algorithm. This algorithm was chosen for its advantages in handling categorical variables without requiring complex encoding processes and its ability to manage imbalanced data, ultimately improving prediction accuracy. In the conducted case study, the model's prediction updates were illustrated by increasing the initial prediction from 0.25 to 0.27 after accounting for residual corrections in the first iteration, with a learning rate of 0.1. This process demonstrates CatBoost's iterative mechanism for improving model predictions through gradual updates. Evaluation results showed that the developed model achieved an accuracy of 98.47% and a ROC-AUC score of 1.00 for several classes, indicating a high capability in accurately classifying stunting risks. These findings suggest that the CatBoost algorithm is effective for stunting risk classification, capable of handling data complexity, and expected to contribute significantly to supporting stunting prevention efforts through improved early detection.
Downloads
References
S. N. Tarmizi, “Prevalensi Stunting di Indonesia Turun ke 21,6% dari 24,4%,” sehatnegeriku.kemkes.go.id, 2023. https://sehatnegeriku.kemkes.go.id/baca/rilis-media/20230125/3142280/prevalensi-stunting-di-indonesia-turun-ke-216-dari-244/
N. Novrizaldi, “Pemerintah Optimis Target Penurunan Stunting 14 Persen Tercapai di 2024,” Kemenko PMK, 2023. https://www.kemenkopmk.go.id/pemerintah-optimis-target-penurunan-stunting-14-persen-tercapai-di-2024
A. N. Rohim, D. A. F. Mursali, S. H. Ashilah, and F. Fidrayani, “Hubungan Status Gizi terhadap Perkembangan Kognitif Anak Usia Dini Aisyah,” Madani J. Ilm. Multidisipline, vol. 2, no. 6, pp. 234–243, 2024.
S. Sadariah, M. Rifai, M. I. Nur, and M. Musfirah, “Analisis Faktor Yang Mempengaruhi Kejadian Stunting Pada Balita Usia 6-59 Bulan,” J. Ilm. Kesehat. Sandi Husada, vol. 12, no. 2, pp. 317–323, 2023, doi: 10.35816/jiskh.v12i2.1075.
M. L. Dambe, S. Y. Padang, and M. S. Adha, “Evaluasi K-Nearest Neighbour Untuk Klasifikasi Status Gizi Balita,” INFINITY, vol. 3, no. 1, pp. 33–40, 2023, doi: 10.34148/infinity.v9i1.xxx.
F. M. Sarimole, F. B. Pasaribu, Y. Akbar, and A. Z. Hidaya, “Penerapan Algoritma K-Nearest Neighbor Untuk Klasifikasi Status Gizi Balita Di Posyandu Nusa Indah 4,” J. Tek., vol. 18, no. 2, pp. 489–500, 1978.
D. N. A. Kurniawan and M. Maryam, “Implementasi Metode Decision Tree pada Sistem Prediksi Status Gizi Balita,” J. Sains Komput. Inform., vol. 7, no. 2, pp. 731–739, 2023.
Y. R. Nasution, A. Armansyah, M. Furqan, and T. R. Matondang, “Penerapan Algoritma C4.5 Pada Klasifikasi Status Gizi Balita,” J. FASILKOM, vol. 14, no. 1, pp. 216–225, 2024.
P. Handayani, A. C. Fauzan, and H. Harliana, “Machine Learning Klasifikasi Status Gizi Balita Menggunakan Algoritma Random Forest,” KLIK Kaji. Ilm. Inform. dan Komput., vol. 4, no. 6, pp. 3064–3072, 2024, doi: 10.30865/klik.v4i6.1909.
T. Swetha, R. R, T. Sajitha, V. B, J. Sravani, and B. Praveen, “Forecasting Online Shoppers Purchase Intentions with CatBoost Classifier,” in International Conference on Distributed Computing and Optimization Techniques (ICDCOT), 2024, pp. 1–6. doi: 10.1109/ICDCOT61034.2024.10515309.
V. N. Ogar, S. Hussain, and K. A. A. Gamage, “Transmission Line Fault Classification of Multi-Dataset Using CatBoost Classifier,” Signals, vol. 3, no. 3, pp. 468–482, 2022, doi: 10.3390/signals3030027.
R. I. Borman, F. Rossi, Y. Jusman, A. A. A. Rahni, S. D. Putra, and A. Herdiansah, “Identification of Herbal Leaf Types Based on Their Image Using First Order Feature Extraction and Multiclass SVM Algorithm,” in International Conference on Electronic and Electrical Engineering and Intelligent System (ICE3IS), 2021, pp. 12–17.
R. I. Borman, F. Rossi, D. Alamsyah, R. Nuraini, and Y. Jusman, “Classification of Medicinal Wild Plants Using Radial Basis Function Neural Network with Least Mean Square,” in International Conference on Electronic and Electrical Engineering and Intelligent System (ICE3IS), 2022.
R. P. Pradana, “Stunting Toddler Detection,” Kaggle, 2024. https://www.kaggle.com/datasets/rendiputra/stunting-balita-detection-121k-rows/
R. I. Borman and M. Wati, “Penerapan Data Maining Dalam Klasifikasi Data Anggota Kopdit Sejahtera Bandarlampung Dengan Algoritma Naïve Bayes,” J. Ilm. Fak. Ilmu Komput., vol. 9, no. 1, pp. 25–34, 2020.
M. T. Syamkalla, S. Khomsah, Y. Setiya, and R. Nur, “Implementasi Algoritma Catboost dan Shapley Additive Explanations (SHAP) Dalam Memprediksi Popularitas Game Indie Pada Platform Steam,” J. Teknol. Inf. dan Ilmu Komput., vol. 11, no. 4, pp. 771–776, 2024, doi: 10.25126/jtiik.1148503.
A. F. Istianto, A. I. Hadiana, and F. R. Umbara, “Prediksi Curah Hujan Menggunakan Metode Categorical Boosting (Catboost),” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 4, pp. 2930–2937, 2023.
A. F. L. Ptr, M. M. Siregar, and I. Daniel, “Analysis of Gradient Boosting, XGBoost, and CatBoost on Mobile Phone Classification,” J. Comput. Networks, Archit. High Perform. Comput., vol. 6, no. 2, pp. 661–670, 2024.
D. Hao, Y. Xiaoqi, and Q. Taoyu, “Hybrid Machine Learning Models Based on CATBoost Classifier for Assessing Students’ Academic Performance,” Int. J. Adv. Comput. Sci. Appl., vol. 15, no. 7, pp. 94–106, 2024.
P. Singh, T. Hasija, and K. R. Ramkumar, “Leveraging ML with XGBoost, CatBoost and LGBoost Classifiers to Optimize Water Quality Assessment and Prediction,” in International Conference on Information Technology, Electronics and Intelligent Communication Systems (ICITEICS), 2024, pp. 1–6. doi: 10.1109/ICITEICS61368.2024.10625322.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Model Klasifikasi Risiko Stunting Pada Balita Menggunakan Algoritma CatBoost Classifier
ARTICLE HISTORY
How to Cite
Issue
Section
Copyright (c) 2024 Omar Pahlevi, Dewi Ayu Nur Wulandari, Luci Kanti Rahayu , Henny Leidiyana, Yopi Handrianto

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).