Perancangan Sistem Informasi Pengklasifikasian Rumah Sakit Menggunakan Algoritma K-Means Clustering
DOI:
https://doi.org/10.47065/bulletincsr.v4i2.338Keywords:
Facilities; General; Hospital; K-MeansAbstract
Public facilities are facilities provided for public purposes such as roads, street lighting, bus stops, sidewalks, and crossing bridges. The facilities provided are facilities that provide convenience for the community so that they must be properly maintained. Pedestrian facilities function to separate pedestrians from vehicle traffic lanes to ensure pedestrian safety and smooth traffic. Hospitals have a classification according to the Regulation of the Minister of the Republic of Indonesia Number 56 of 2004 concerning Hospital Classification and Licensing. This is in line with research conducted by researchers that not all hospitals treat all problems/diseases that arise in sick individuals, there are classifications that have been stated in these regulations. Text mining is text analysis where data sources are usually obtained from documents, and the goal is to find words that can represent the contents of the document so that an analysis of the relationships, linkages and classes between documents can be carried out. The Hospital Classification Information System created can classify hospitals based on the data entered which can be accessed using an Android-based smartphone. This Hospital Classification Information System was created using the K-Means Clustering Method in hospital classification.
Downloads
References
N. A. Temesvari dan D. B. Subakti, “Hubungan Fasilitas Kerja dengan Kepuasan Kerja di Unit Rekam Medis Rumah Sakit,” J. Kesehatan, Vol. %1 dari %2175-181, p. 2, 2020.
S. E. Ramdhany, Pemanfaatan Sarana Publik Pedestrian Di Kota Bandung Sebagai Latar Pemotretan FotografiStill Life. Sanny Eka Ramdhany, 2019.
M. B. Hajrah, “Manajemen Kualitas Pelayanan Rumah Sakit Umum Daerah Batara Siang Kabupaten Pangkep,” KAIZEN, vol. 1, pp. 1-9, 2019.
R. B. Prasetyo, Y. A. Pranto dan R. P. Prasetya, “IMPLEMENTASI DATA MINING MENGGUNAKAN ALGORITMA K-MEANS CLUSTERING PENYAKIT PASIEN RAWAT JALAN PADA KLINIK DR. ATIRAH DESA SIOYONG, SULTENG,” JATI, pp. 2144-2151, 2023.
I. N. M. Adiputra, “CLUSTERING PENYAKIT DBD PADA RUMAH SAKIT DHARMA KERTI MENGGUNAKAN ALGORITMA K-MEANS,” Information System and Emerging Technology Journal, pp. 99-105, 2021.
E. Mayasari, N. Munna, L. Kodriyah, I. Herawati dan a. R. S. Aditya, “Keputusan Masyarakat Dalam Pemilihan Rumah Sakit Untuk Pelayanan Kesehatan Di Wilayah Malang Raya,” JKEP, vol. 5, pp. 114-121, 2020.
Hartanto, “Text Mining Dan Sentimen Analisis Twitter Pada Gerakan Lgbt,” Intuisi J. Psikol. Ilm, vol. 9, pp. 18-25, 2017.
M. N. Al-Kabi, G. Kanaan, R. Al-Shalabi, S. Al-Sinjilawi dan R. S. Al-Mustafa, “Al-Hadith Text Classifier,” Journal of Applied Sciences 5, pp. 584-587, 2005.
F. Harrag dan E. El-Qawasmah, “Neural Network for Arabic Text Classification,” 2009 Second International Conference on the Applications of Digital Information and Web Technologies, pp. 778-783, 2009.
M. Zhang dan Z. H. Zhou, “Multilabel neural networks with applications to functional genomics and text,” IEEE transactions on Knowledge and Data Engineering, pp. 1338-1351, 2006.
A. A. Lesmana, Y. Purwanto dan A. Dinimaharawati, “IMPLEMENTASI ALGORITMA K-MEANSUNTUK CLUSTERING PENYAKIT HIV/AIDS DI INDONESIA,” e-Proceeding of Engineering, vol. 6, pp. 5564-5580, 2019.
D. Aulia, M. Safii dan D. Suhendro, “Penerapan Algoritma K-Means dalam Proses Clustering Penilaian Kinerja Aparatur Sipil Negera di Sekretariat DPRD Pematangsiantar,” JURASIK, vol. 6, pp. 47-60, 2021.
N. Mirantika, A. Tsamratul'Ain dan F. D. Agnia, “PENERAPAN ALGORITMA K-MEANS CLUSTERING UNTUK PENGELOMPOKAN PENYEBARAN COVID-19 DI PROVINSI JAWA BARAT,” J. Nuansa Informatika, vol. 15, pp. 92-98, 2021.
E. F. A. Pratama dan J. Jumadi, “Implementasi Metode K-Means Clustering Pada Segmentasi Citra Digital,” J. Media Infotama, vol. 18, pp. 291-301, 2022.
G. Gustientiedina, M. H. Adiya dan Y. Desnelita, “Penerapan Algoritma K-Means Untuk Clustering Data Obat-Obatan,” J. Nas. Teknol. dan Sist, vol. 5, pp. 17-24, 2019.
S. Setyaningtyas, B. I. Nugroho dan Z. Arif, “TINJAUAN PUSTAKA SISTEMATIS PADA DATA MINING:STUDI KASUS ALGORITMA K-MEANS CLUSTERING,” J Teknoif Teknik Informatika, vol. 10, pp. 52-61, 2022.
F. Nasari dan C. J. M. Sianturi, “Penerapan Algoritma K-Means ClusteringUntuk Pengelompokkan Penyebaran Diare Di Kabupaten Langkat,” Cogito Smart Journal, vol. 2, pp. 108-119, 2016.
R. K. Dinata, B. dan Ridwan, “Analisis Chebyshev Distance pada Algoritma K-Nearest Neighbor dalam Sistem Klasifikasi Rumah Sakit,” JETI, vol. 3, pp. 13-22, 2022.
A. Faisal, B. dan C. R. Sari, “SISTEM INFORMASI PENGKLASIFIKASIAN HASIL BELAJAR PESERTA DIDIK DENGAN TEKNIK DATA MINING METODE K-NEAREST NEIGHBOR (K-NN),” J. Peqguruang: Conference Series, vol. 2, pp. 79-84, 2020.
E. R. Rachmawati Jasin dan S. Al-Faraby, “Klasifikasi Anjuran, Larangan dan Informasi pada Hadis Sahih Al-Bukhari,” e-Proceeding of Engineering, p. 4683, 2017.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Perancangan Sistem Informasi Pengklasifikasian Rumah Sakit Menggunakan Algoritma K-Means Clustering
ARTICLE HISTORY
How to Cite
Issue
Section
Copyright (c) 2024 Jackri Hendrik, Joni

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).