Implementasi Metode Apriori Pada Sistem Persediaan Bahan Kimia Di Laboraturium Forensik Medan


Authors

  • Niken Aprilia Universitas Budi Darma, Medan, Indonesia
  • Mesran Universitas Budi Darma, Medan, Indonesia
  • Fince Tinus Waruwu Universitas Budi Darma, Medan, Indonesia

DOI:

https://doi.org/10.47065/bulletincsr.v2i1.135

Keywords:

Data Mining; Apriori Method; Chemicals

Abstract

Data mining is a term used to describe the discovery of knowledge in databases. Data mining is a process that uses statistical, mathematical, artificial intelligence, and machine learning techniques to extract and identify useful information and related knowledge from large databases. With data mining, a gem in the form of knowledge will be obtained in a large number of data sets. The Apriori (RF) method is a method that can improve accuracy results, because generating child nodes for each node is done randomly. This method is used to build a decision tree consisting of root nodes, internal nodes, and leaf nodes by taking attributes and data randomly according to the applicable provisions. The root node is the node located at the top, or commonly referred to as the root of the decision tree. The solution for determining chemical stock inventories at the Medan Branch Forensic Laboratory, by applying the Apriori method to determine the correlation coefficient level of frequently used products so that more frequently needed products can be provided to avoid chemical vacancies at the Medan Branch Forensic Laboratory

Downloads

Download data is not yet available.

References

R. M. Simanjorang, “Implementation of Apriori Algorithm in Determining the Level of Printing Needs,” Infokum, vol. 8, no. 2, Juni, pp. 43–48, 2020.

H. Widayu, S. Darma, N. Silalahi, and Mesran, “Data Mining Untuk Memprediksi Jenis Transaksi Nasabah Pada Koperasi Simpan Pinjam Dengan Algoritma C4.5,” Issn 2548-8368, vol. Vol 1, No, no. June, p. 7, 2017.

Moh.Sholik and A. Salam, “Implementasi Algoritma Apriori untuk Mencari Asosiasi Barang yang Dijual di E-commerce OrderMas,” Techno.COM, vol. 17, no. 2, pp. 158–170, 2018.

R. A. Saputra, “Komparasi Algoritma Klasifikasi Data Mining Untuk Memprediksi Penyakit Tuberculosis ( Tb ): Studi Kasus Puskesmas Karawang,” Semin. Nas. Inov. dan Tren, no. April, pp. 1–8, 2014.

N. R. Yunus and A. Rezki, “Kebijakan Pemberlakuan Lock Down Sebagai Antisipasi Penyebaran Corona Virus Covid-19,” SALAM J. Sos. dan Budaya Syar-i, vol. 7, no. 3, 2020.

D. Evanko, “Optical imaging of the native brain,” Nat. Methods, vol. 7, no. 1, p. 34, 2010.

E. Buulolo, Data Mining Untuk Perguruan Tinggi, 1st ed. Yogyakarta: Deepublish, 2020.

A. Nursikuwagus and T. Hartono, “Implementasi Algoritma Apriori Untuk Analisis Penjualan Dengan Berbasis Web,” Simetris J. Tek. Mesin, Elektro dan Ilmu Komput., vol. 7, no. 2, p. 701, 2016.

Y. Yendrizal, “Data Mining Penjualan Tanaman Hias dengan Algoritma APRIORI Pada Toko Flores Elishabet,” J. Media Inform. Budidarma, vol. 4, no. 2, p. 472, 2020.

D. P. Utomo and M. Mesran, “Analisis Komparasi Metode Klasifikasi Data Mining dan Reduksi Atribut Pada Data Set Penyakit Jantung,” J. Media Inform. Budidarma, vol. 4, no. 2, p. 437, 2020.

R. Rismanto, L. Darmawan, and A. Prasetyo, “Penerapan Algoritma Apriori Dalam,” vol. 04, no. 02, pp. 97–102, 2017.

M. Yetri and S. Yakun, “Data Mining Untuk Analisis Pola Pemilihan Menu Pada Penang Corner Cafe Dan Resto Menggunakan Algoritma Apriori,” J-SISKO TECH J. Teknol. Sist. Inf. dan Sist. Komput. TGD, vol. 1, no. 2, pp. 114–123, 2018.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Implementasi Metode Apriori Pada Sistem Persediaan Bahan Kimia Di Laboraturium Forensik Medan

Dimensions Badge

ARTICLE HISTORY

Published: 2021-12-27

Abstract View: 234 times
PDF Download: 269 times

How to Cite

Niken Aprilia, Mesran, & Fince Tinus Waruwu. (2021). Implementasi Metode Apriori Pada Sistem Persediaan Bahan Kimia Di Laboraturium Forensik Medan. Bulletin of Computer Science Research, 2(1), 6-10. https://doi.org/10.47065/bulletincsr.v2i1.135

Issue

Section

Articles

Most read articles by the same author(s)