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Abstract−Accurate classification of bird and drone images is crucial in supporting aerial surveillance and security systems, particularly 

to distinguish between natural objects such as birds and man-made objects such as drones. Manual classification methods have 

limitations in terms of speed and accuracy, thus necessitating a more efficient and reliable technology-based approach. This study aims 

to implement a ResNet-50 based Convolutional Neural Network (CNN) architecture to automatically classify bird and drone images. 
The dataset used was obtained from the Kaggle platform and consists of two classes: Bird and Drone, with a total of 22,407 images. 

The data was split into training (17,323 images), testing (844 images), and validation (1,740 images). All images underwent 

preprocessing and augmentation steps to enhance data quality and model training performance. The model was developed using the 

ResNet-50 architecture, which is well-regarded for handling complex image classification tasks. Evaluation results show that the model 
achieved an accuracy of 92%. For the Bird class, a precision of 0.83 and a recall of 0.99 were obtained, while for the Drone class, 

precision reached 0.99 and recall was 0.86. The average F1-score of 0.92 indicates that the model delivers balanced and reliable 

performance in the binary image classification task. 
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1. INTRODUCTION  

Unmanned aerial vehicles (UAVs) or drones have become one of the most significant technological innovations in recent 

years, with applications spanning various sectors. These include precision agriculture [1]-[4], military operations [5]-[8], 

logistics and delivery services [9]-[11], and environmental monitoring and disaster management [12]. The growing use 

of drones highlights their potential to improve the efficiency and effectiveness of diverse human activities [13]-[15]. 

However, the increased presence of drones in airspace introduces new challenges, particularly in terms of visual 

object recognition [16]-[18]. A critical issue is the difficulty in distinguishing drones from natural entities such as birds 

[19]. Due to similar visual characteristics when observed from a distance or under suboptimal conditions [20]-[23], 

distinguishing between these objects becomes complex. Misidentifying drones and birds can result in errors in 

surveillance systems, jeopardize airspace security, and even impact wildlife conservation efforts [24]-[27]. Consequently, 

an intelligent and efficient image classification system is required to accurately differentiate between these objects [28]-

[30]. 

One effective approach for image classification is the use of Convolutional Neural Networks (CNNs) [31]-[35], 

particularly the ResNet (Residual Network) architecture [36]-[39]. ResNet was designed to address the issue of accuracy 

degradation encountered when CNNs become deeper [40]-[43]. This architecture introduces skip connections (or identity 

shortcut connections), enabling information to bypass one or more layers without distortion. This feature accelerates 

model convergence and enhances its ability to learn complex features [44]-[46]. These characteristics make ResNet highly 

suitable for large-scale image recognition, detection, and segmentation tasks [47]-[49]. Additionally, ResNet has shown 

superior performance in terms of accuracy and resistance to overfitting compared to standard CNNs [50]-[52]. The 

flexibility of ResNet, with its different configurations (e.g., ResNet-18, ResNet-50, ResNet-152), allows it to adapt to 

datasets of varying complexity [53]-[56]. 

Research on bird image classification has previously utilized architectures such as MobileNetV2, which has been 

employed to classify bird species with high accuracy. For instance, a study trained a model using 58,388 images from 

400 bird species, achieving a 92% accuracy, though with a loss value of 0.8835 [57]. Another study applied CNN for bird 

image classification, reaching an accuracy of 96.30% on training data and 81.33% on validation data after 20 epochs [58]. 

However, no previous studies have focused on the classification of both birds and drones within a single model, creating 

a clear research gap. 

This study aims to fill this gap by developing a classification model based on the ResNet CNN architecture to 

distinguish between bird and drone images. Unlike prior research, which concentrated on a single object type or employed 

basic CNN models, this study adopts the deeper and more complex ResNet architecture. The novelty of this work lies in 

its application of ResNet to classify two visually similar aerial objects in a single classification system. The primary 

contribution of this study is the development of a ResNet-based CNN model capable of accurately distinguishing between 

birds and drones, along with an in-depth evaluation of its performance metrics. The findings of this research are expected 

to support the development of automated surveillance and aerial object detection systems for security and environmental 

conservation purposes. 
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2. RESEARCH METHODOLOGY 

2.1 Research Stages 

To ensure that the results are scientifically accountable, this research was conducted empirically, logically, and 

systematically—from problem formulation to report preparation. Figure 1 presents the structure of the proposed research 

stages.  
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Figure 1. Research Stages 

The figure illustrates the research workflow for bird and drone image classification using a ResNet-based 

Convolutional Neural Network (CNN) architecture. The process begins with the initiation phase, which includes problem 

identification, setting research objectives, and collecting relevant literature on bird and drone classification as well as the 

ResNet architecture. This is followed by the data collection stage, where image data is gathered from Kaggle, consisting 

of two classes: birds and drones. Once the data is obtained, a pre-processing stage is carried out to prepare the data before 

model training. The CNN implementation is then performed using the ResNet architecture as the primary model. After 

the model is built, performance analysis is conducted by measuring evaluation metrics such as accuracy, precision, recall, 

and F1-score. The results of the performance analysis are further examined to gain a deeper understanding of the model’s 

effectiveness. The final stage involves formulating solutions or conclusions that can be used for further development. 

This diagram represents a systematic and structured workflow in conducting deep learning-based research for binary 

image classification. 

2.2 Problem Identification 

The main challenge addressed in this research is the difficulty in visually distinguishing between birds and drones, 

especially in automated surveillance systems. Both share similar characteristics, such as size, shape, and movement 

patterns, making them hard to differentiate from a distance or under suboptimal conditions [59]-[60]. Studies show that 

drones and birds can appear visually similar, particularly when flying at similar altitudes or when observed in varying 

lighting and camera resolutions [61]-[62]. This highlights the need for a more accurate AI-based image classification 

system. While CNNs have proven effective in many image classification tasks, deeper architectures like ResNet are 
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necessary to overcome accuracy degradation and improve the differentiation of objects with similar visual features. This 

research aims to evaluate the performance of ResNet in classifying birds and drones, addressing these challenges. 

2.3 Research Objectives 

The objective of this research is to evaluate the capability of the ResNet-based Convolutional Neural Network (CNN) 

architecture in accurately and efficiently performing image classification between birds and drones. The evaluation is 

conducted by assessing the model’s performance through key metrics such as accuracy, precision, recall, and F1-score to 

measure how well the model can distinguish between natural and artificial aerial objects. Additionally, this study aims to 

identify the ResNet variant or configuration that is most suitable and optimal for this two-class classification task, 

considering both the accuracy of the results and training time efficiency. Consequently, the findings of this research are 

expected to contribute to the development of reliable computer vision–based surveillance systems and serve as a reference 

for selecting deep learning models for similar image classification tasks in the future. 

2.4 Literature Review Stage 

In the literature review stage, previous studies related to bird and drone image classification were examined to establish 

the foundation for understanding CNN models, particularly the ResNet architecture. This review assessed the performance 

of basic CNN models and highlighted their limitations in classifying objects with similar visual features, such as birds 

and drones. For instance, studies on bird classification using CNNs have reported accuracy rates ranging from 81% to 

96%, but with challenges related to overfitting and poor generalization on unseen data [57]-[58]. In contrast, ResNet has 

shown superior performance due to its deep architecture and the introduction of skip connections, which help overcome 

accuracy degradation and improve model convergence, especially for complex classification tasks [40]-[43]. 

By comparing the results and metrics of previous studies with this research, it becomes clear that while simpler 

CNN models struggle with differentiating visually similar objects, ResNet’s ability to handle deeper architectures without 

overfitting makes it a more suitable choice for the task at hand. This comparison underscores the decision to adopt ResNet 

for the two-class image classification task in this study.. 

2.4.1 RestNet 

ResNet (Residual Network) is a CNN architecture introduced to address the accuracy degradation problem in very deep 

networks. By utilizing residual learning and skip connections [63]-[65], ResNet enables smoother information flow 

between layers, resulting in more stable and accurate training [66]-[68]. 

 

Figure 2. RestNet Architecture 

The image illustrates the ResNet50 architecture, a widely used variant of the Residual Network (ResNet) for image 

classification tasks. The architecture begins with a Zero Padding stage followed by a basic convolutional layer (Stage 1) 

that includes Convolution, Batch Normalization, ReLU activation, and Max Pooling. Subsequently, the model consists 

of five main stages (Stage 2 to Stage 5), each composed of a combination of convolutional blocks (Conv Blocks) and 

identity blocks. These blocks incorporate shortcut connections designed to address the vanishing gradient problem 

common in very deep networks. After the feature extraction stages, the output undergoes Average Pooling, Flattening, 

and passes through a Fully Connected (FC) layer to produce the final classification output. This structure enables training 

of deep networks without loss of accuracy, making ResNet50 highly effective for large-scale image recognition. 

The choice of ResNet50 for this study, as opposed to other variants such as ResNet18 or ResNet101, was based 

on its balanced trade-off between performance and computational efficiency [69]-[73]. ResNet18, being a shallower 

network, may not capture the complex features required for distinguishing between visually similar objects like birds and 

drones [74]-[77]. On the other hand, ResNet101, although deeper, could be computationally more expensive and may 

lead to longer training times with diminishing returns for the given dataset size [78]-[80]. ResNet50 offers a good 

compromise, providing deep feature extraction capabilities while maintaining manageable computational costs, making 

it well-suited for this task [81]-[82]. 

2.5  Data Collection 

The initial step in the data collection process involved obtaining images from the Kaggle website [83]. This study focuses 

on two object classes: bird and drone. The total number of images used amounts to 20907, with the distribution detailed 

in Table 1. 
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Table 1. Number of Images 

No Object Types Amount 

1 Bird 8406 

2 Drone 12501 

  Total 20907 

The data in Table 1 is sourced from Kaggle, where the images have already been categorized by their respective 

classes. Prior to training, several preprocessing and augmentation steps were applied to the images to improve model 

performance. The preprocessing steps included resizing all images to a consistent size, normalizing pixel values, and 

converting images to grayscale where necessary. Augmentation techniques, such as random rotations, flipping, and 

zooming, were applied to increase the diversity of the dataset and prevent overfitting. These preprocessing and 

augmentation methods ensured that the model could generalize better to unseen data and enhance its ability to classify 

bird and drone images accurately. 

  

(a) (b) 

Figure 3. Object Image Types: (a) Bird (b) Drone 

Both images depict objects flying in the air but have very distinct characteristics. The first image (a) shows a bird, 

featuring an organic body shape, clearly visible feathers on its wide, curved wings, and a natural flying posture beneath 

a cloudy sky. The bird appears to be flapping its wings to maintain altitude and flight direction. In contrast, the second 

image (b) displays a drone, a man-made flying machine with four propellers that act as both propulsion and stabilizers. 

The drone has a symmetrical shape, with rigid, metallic surfaces and an aerodynamic design. Unlike the bird, the drone 

includes indicator lights and rapidly spinning propellers. Although both are airborne, the differences in shape, material, 

and flight patterns are striking-making the classification between birds and drones a significant challenge in computer 

vision-based image recognition. 

3. RESULT AND DISCUSSION 

3.1 Image Data Pre-processing Results 

At this stage, data preparation is carried out before processing with the model. This step includes data cleaning as well as 

splitting the data into training, validation, and testing sets. The data division resulting from this stage is as follows:  

Table 2. Image Dataset Partitioning 

Data Splitting Class Amount 

Training 
Bird 7389 

Drone 10934 

Testing 
Bird 316 

Drone 528 

Validation 
Bird 701 

Drone 1039 

Data splitting in this study follows common practices, with approximately 70% of the data allocated for training, 

15% for validation, and 15% for testing. This split ratio is chosen to ensure that the model has enough data for training 

while also having sufficient data for validation and testing to evaluate its performance effectively. The training data is 

used to train the model to recognize patterns from each object class. The validation data is used to evaluate the model’s 
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performance during training, helping to fine-tune the model and prevent overfitting. During the training phase, the test 

data is used to assess the final performance of the model on unseen data. 

In addition to data splitting, data augmentation techniques were applied to enhance the dataset and improve model 

generalization. Augmentation methods such as random rotations, flipping, scaling, and zooming were applied to the 

training images. These techniques artificially increase the diversity of the training data, helping the model to learn more 

robust features and preventing overfitting by exposing the model to a wider range of image variations. The use of 

augmentation ensures that the model performs well on real-world data, which can vary in terms of orientation, scale, and 

other factors. 

3.2 CNN Implementation 

In the implementation phase, the CNN architecture used is ResNet, which is known for its ability to overcome the 

vanishing gradient problem and enable training of deeper networks. The ResNet model was successfully implemented to 

distinguish between two image classes, namely birds and drones. Training results showed that the model achieved high 

accuracy on the validation data, indicating that important features of each class were well recognized. During the training 

process, the loss consistently decreased and accuracy increased, demonstrating good model convergence. Additionally, 

visualization of the confusion matrix showed that the model was able to correctly classify the majority of images, although 

some misclassifications likely occurred due to the visual similarity between flying birds and drones in certain poses. 

Overall, the CNN implementation using ResNet proved effective for the task of bird and drone image classification. 

3.3 Performance Analysis 

3.3.1  Image Classification Training Results 

The training process was monitored through loss and accuracy values. The following are the results of the image 

classification training. 

  

(a) (b) 

Figure 4. (a) Training Loss and (b) Training Accuracy of ResNet 

The training process was carried out with specific parameters to optimize the model's performance. A batch size 

of 32 was chosen, as it offers a balance between computational efficiency and model convergence. This batch size allows 

the model to process a sufficient number of images at once, enabling faster learning while maintaining accuracy. The 

learning rate was set at 0.001, which is a commonly used value for fine-tuning deep learning models. This learning rate 

ensures that the model updates its weights effectively without making overly large adjustments that could destabilize 

training. Additionally, the model was trained for 5 epochs, providing enough iterations to allow the model to learn from 

the data while avoiding excessive training that could lead to overfitting. These chosen parameters ensured that the model 

trained efficiently, resulting in smooth curves in both the loss and accuracy graphs, indicating that the model was able to 

learn and generalize effectively. 

3.3.2  Image Classification Evaluation Results 

The image classification evaluation results were analyzed using a confusion matrix, which serves to measure how well 

the model successfully classifies images. This analysis provides insights into the model's performance in identifying each 

class, including the number of correct predictions and the errors occurring in each category. 
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Figure 5. Confusion Matrix of ResNet 

Based on the confusion matrix, the ResNet model demonstrates very good performance in classifying bird and 

drone images. Out of a total of 889 test samples, 358 bird images were correctly classified as birds, while only 3 bird 

images were misclassified as drones. Meanwhile, out of 528 drone images, 456 were correctly recognized, but 72 drone 

images were misclassified as birds. These results indicate that the model has a high accuracy in recognizing birds, with a 

very low false positive rate for this class. 

 

Figure 6. Effect of Backlight, Low Resolution on Prediction 

Terdapat jumlah kesalahan yang relatif lebih tinggi dalam mengenali drone, di mana beberapa gambar drone masih 

diklasifikasikan sebagai burung. Masalah ini dapat dikaitkan dengan faktor-faktor tertentu seperti cahaya latar dan gambar 

beresolusi rendah. Misalnya, gambar drone dengan pencahayaan yang buruk atau resolusi rendah mungkin tampak mirip 

secara visual dengan burung, sehingga model lebih sulit untuk mengidentifikasinya dengan benar. Dalam kasus cahaya 

latar, bentuk dan siluet drone dapat menyerupai burung, yang menyebabkan kesalahan klasifikasi. Selain itu, gambar 

beresolusi rendah dapat mengaburkan fitur-fitur utama drone, yang semakin mempersulit identifikasinya. 

Tantangan-tantangan ini menyoroti potensi masalah dalam sistem pengawasan udara, di mana kesalahan deteksi 

objek drone dapat memengaruhi langkah-langkah keamanan. Secara keseluruhan, meskipun ResNet berkinerja baik dalam 

mendeteksi burung, masih ada ruang untuk perbaikan dalam identifikasi drone, terutama dalam kondisi yang 

memengaruhi kejernihan gambar, seperti cahaya latar dan resolusi rendah. 

3.3.3  Image Classification Prediction Results 

Next, the ResNet model was tested on data by providing five images from each object class, namely Bird and Drone, 

resulting in an average of correct predictions. Figure 14 illustrates the prediction results alongside the actual object images. 

 

 

Figure 7. Prediction Results of Testing with ResNet 
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Figure 7 shows the visualization of ResNet model predictions on several test images from two classes, namely bird 

and drone. Among the four sample images displayed, the first two were correctly classified as birds, consistent with their 

true labels. Meanwhile, in the following two images, there was one misclassification where a drone image was predicted 

as a bird (indicated by the red text "Predicted: Bird"), while the other drone image was correctly classified. 

3.4 Result Analysis 

The results show that the ResNet model handles complex datasets with high inter-class similarity quite well. The complete 

evaluation results are presented in Table 3. 

Table 3. Evaluation Results of the Model 

Classification Report: 

 precision recall   f1-score support 

Bird 0.83 0.99 0.91 361 

Drone 0.99 0.86 0.92 528 

     

accuracy   0.92 889 

macro avg 0.91 0.93 0.91 889 

weighted avg 0.93 0.92 0.92 889 

The evaluation results of the ResNet model are presented in the classification report above. The model achieved 

an overall accuracy of 92% in classifying two classes, namely Bird and Drone. For the Bird class, the model showed a 

precision of 0.83, recall of 0.99, and an F1-score of 0.91, indicating that nearly all Bird images were correctly recognized, 

although some Bird images were mistakenly classified as Drone. Conversely, for the Drone class, the model recorded a 

very high precision of 0.99 but a recall of only 0.86, showing that while almost all Drone predictions were correct, there 

were still a considerable number of Drone images that were not accurately recognized. 

Macro average calculates the precision, recall, and F1-score by treating all classes equally, without considering 

their support (i.e., the number of samples in each class). In this case, the macro average values for precision (0.91), recall 

(0.93), and F1-score (0.91) indicate that the model performs quite well on average across both classes. 

Weighted average, on the other hand, takes into account the support (number of samples) of each class, giving 

more weight to the performance on the larger class (in this case, Drone). The weighted average values for precision (0.93), 

recall (0.92), and F1-score (0.92) reflect a slightly better overall performance, as the Drone class has more samples, and 

the model performs very well on this class. 

While the model shows strong performance, especially with Bird classification, there is a noticeable imbalance in 

performance between the two classes. The recall for Drone is lower (0.86) compared to Bird (0.99), which indicates that 

the model has a harder time recognizing drones, particularly under certain conditions such as backlighting or low 

resolution. 

4. CONCLUSION 

This research demonstrates that the ResNet architecture effectively classifies aerial images into birds and drones, 

achieving an accuracy of 92% and an F1-score of 0.92. The model excels at identifying birds but shows more errors in 

classifying drones, likely due to the visual similarity between the two, especially under challenging conditions like 

backlighting and low resolution. To improve Drone classification, future research could focus on data augmentation, fine-

tuning the model with adjusted class weights, and exploring advanced techniques like ensemble models or attention 

mechanisms. Despite these challenges, ResNet remains a strong choice for aerial image classification, and this study 

paves the way for the development of efficient, real-time computer vision systems for aerial monitoring, especially for 

devices with limited computational resources, such as drones. 

REFERENCES 

[1] P. Velusamy, S. Rajendran, R. K. Mahendran, S. Naseer, M. Shafiq, and J. Choi, “Unmanned Aerial Vehicles (UAV) in Precision 

Agriculture: Applications and Challenges,” Energies, vol. 15, no. 1, p. 217, 2022, doi: 10.3390/en15010217. 

[2] J. del Cerro, C. C. Ulloa, A. Barrientos, and J. de León Rivas, “Unmanned aerial vehicles in agriculture: A survey,” Agronomy, 
vol. 11, no. 2, 2021, doi: 10.3390/agronomy11020203. 

[3] D. Olson and J. Anderson, “Review on unmanned aerial vehicles, remote sensors, imagery processing, and their applications in 

agriculture,” Agron. J., vol. 113, no. 2, pp. 971–992, 2021, doi: 10.1002/agj2.20595. 

[4] M. F. F. Rahman, S. Fan, Y. Zhang, and L. Chen, “A comparative study on application of unmanned aerial vehicle systems in 

agriculture,” Agric., vol. 11, no. 1, pp. 1–26, 2021, doi: 10.3390/agriculture11010022. 

[5] S. A. H. Mohsan, M. A. Khan, F. Noor, I. Ullah, and M. H. Alsharif, “Towards the Unmanned Aerial Vehicles (UAVs): A 

Comprehensive Review,” Drones, vol. 6, no. 6, 2022, doi: 10.3390/drones6060147. 
[6] Ö. Ö. Kanat, “The Significance of Unmanned Aerial Vehicles (UAVs) in Strategic Contexts,” Anadolu Strat. Derg., pp. 75–87, 

2023, [Online]. Available: https://www.researchgate.net/publication/376894479 

[7] L. Criollo, C. Mena-arciniega, and S. Xing, “CLASSIFICATION, MILITARY APPLICATIONS, AND OPPORTUNITIES OF 

https://hostjournals.com/bulletincsr
https://doi.org/10.47065/bulletincsr.v5i4.545
https://creativecommons.org/licenses/by/4.0/


BULLETIN OF COMPUTER SCIENCE RESEARCH 
ISSN 2774-3659  (Media Online) 

Vol 5, No 4, June 2025 | Hal 372-381 
https://hostjournals.com/bulletincsr 

DOI: 10.47065/bulletincsr.v5i4.545 

Copyright © 2025 The Author, Page 379  
This Journal is licensed under a Creative Commons Attribution 4.0 International License 

UNMANNED AERIAL VEHICLES,” vilnus Tech, vol. 28, no. 2, pp. 115–127, 2024, doi: 

https://doi.org/10.3846/aviation.2024.21672. 
[8] M. Ghamari, P. Rangel, M. Mehrubeoglu, G. S. Tewolde, and R. Simon Sherratt, “Unmanned Aerial Vehicle Communications 

for Civil Applications: A Review,” IEEE Access, vol. 10, no. September, pp. 102492–102531, 2022, doi: 

10.1109/ACCESS.2022.3208571. 

[9] M. Ayamga, S. Akaba, and A. A. Nyaaba, “Multifaceted applicability of drones: A review,” Technol. Forecast. Soc. Change, 
vol. 167, no. February, 2021, doi: 10.1016/j.techfore.2021.120677. 

[10] G. E. M. Abro, S. A. B. M. Zulkifli, R. J. Masood, V. S. Asirvadam, and A. Laouti, “Comprehensive Review of UAV Detection, 

Security, and Communication Advancements to Prevent Threats,” Drones, vol. 6, no. 10, 2022, doi: 10.3390/drones6100284. 

[11] J. Jordan, “The future of unmanned combat aerial vehicles: An analysis using the Three Horizons framework,” Futures, vol. 134, 
no. April, 2021, doi: 10.1016/j.futures.2021.102848. 

[12] A. Fascista, “Toward Integrated Large-Scale Environmental Monitoring Using WSN/UAV/Crowdsensing: A Review of 

Applications, Signal Processing, and Future Perspectives,” Sensors (Switzerland), vol. 22, no. 5, 2022, doi: 

https://doi.org/10.3390/s22051824. 
[13] N. S. Labib, M. R. Brust, G. Danoy, and P. Bouvry, “The Rise of Drones in Internet of Things: A Survey on the Evolution, 

Prospects and Challenges of Unmanned Aerial Vehicles,” IEEE Access, vol. 9, pp. 115466–115487, 2021, doi: 

10.1109/ACCESS.2021.3104963. 

[14] A. Rejeb, K. Rejeb, S. Simske, and H. Treiblmaier, “Humanitarian Drones: A Review and Research Agenda,” Internet of Things 
(Netherlands), vol. 16, no. May, 2021, doi: 10.1016/j.iot.2021.100434. 

[15] D. Askerbekov, J. A. Garza-Reyes, R. Roy Ghatak, R. Joshi, J. Kandasamy, and D. Luiz de Mattos Nascimento, “Embracing 

drones and the Internet of drones systems in manufacturing – An exploration of obstacles,” Technol. Soc., vol. 78, no. June, p. 

102648, 2024, doi: 10.1016/j.techsoc.2024.102648. 
[16] A. A. Laghari, A. K. Jumani, R. A. Laghari, H. Li, S. Karim, and A. A. Khan, “Unmanned aerial vehicles advances in object 

detection and communication security review,” Cogn. Robot., vol. 4, no. July, pp. 128–141, 2024, doi: 

10.1016/j.cogr.2024.07.002. 

[17] M. Y. Arafat, M. M. Alam, and S. Moh, “Vision-Based Navigation Techniques for Unmanned Aerial Vehicles: Review and 
Challenges,” Drones, vol. 7, no. 2, 2023, doi: 10.3390/drones7020089. 

[18] Z. Liu, P. An, Y. Yang, S. Qiu, Q. Liu, and X. Xu, “Vision-Based Drone Detection in Complex Environments: A Survey,” 

Drones, vol. 8, no. 11, pp. 1–27, 2024, doi: 10.3390/drones8110643. 

[19] N. Millner, A. M. Cunliffe, M. Mulero-Pázmány, B. Newport, C. Sandbrook, and S. Wich, “Exploring the opportunities and risks 
of aerial monitoring for biodiversity conservation,” Glob. Soc. Challenges J., vol. 2, no. July 2021, pp. 2–23, 2023, doi: 

10.1332/tiok6806. 

[20] U. Seidaliyeva, L. Ilipbayeva, K. Taissariyeva, N. Smailov, and E. T. Matson, “Advances and Challenges in Drone Detection 

and Classification Techniques: A State-of-the-Art Review,” Sensors, vol. 24, no. 1, pp. 1–31, 2024, doi: 10.3390/s24010125. 
[21] A. Gholami, “Exploring drone classifications and applications: a review,” Int. J. Eng. Geosci., vol. 9, no. 3, pp. 418–442, 2024, 

doi: 10.26833/ijeg.1428724. 

[22] R. Perz, “the Multidimensional Threats of Unmanned Aerial Systems: Exploring Biomechanical, Technical, Operational, and 

Legal Solutions for Ensuring Safety and Security,” Arch. Transp., vol. 69, no. 1, pp. 91–111, 2024, doi: 
10.61089/aot2024.h7j32562. 

[23] A. Alotaibi, C. Chatwin, and P. Birch, “Ubiquitous Unmanned Aerial Vehicles (UAVs): A Comprehensive Review,” Shanlax 

Int. J. Arts, Sci. Humanit., vol. 11, no. 2, pp. 62–90, 2023. 

[24] M. Khalid, M. Namian, and C. Massarra, “The Dark Side of the Drones: A Review of Emerging Safety Implications in 
Construction,” ASC Conference, vol. 2, pp. 18–7, 2021, doi: 10.29007/x3vt. 

[25] C. R. Demmer, S. Demmer, and T. McIntyre, “Drones as a tool to study and monitor endangered Grey Crowned Cranes (Balearica 

regulorum): Behavioural responses and recommended guidelines,” Ecol. Evol., vol. 14, no. 2, pp. 1–14, 2024, doi: 

10.1002/ece3.10990. 
[26] D. Gradolewski, D. Dziak, D. Kaniecki, A. Jaworski, M. Skakuj, and W. J. Kulesza, “A runway safety system based on vertically 

oriented stereovision,” Sensors, vol. 21, no. 4, pp. 1–25, 2021, doi: 10.3390/s21041464. 

[27] A. M. Wilson, K. S. Boyle, J. L. Gilmore, C. J. Kiefer, and M. F. Walker, “Species-specific responses of bird song output in the 

presence of drones,” Drones, vol. 6, no. 1, 2022, doi: 10.3390/drones6010001. 
[28] A. E. Öztürk and E. Erçelebi, “Real uav-bird image classification using cnn with a synthetic dataset,” Appl. Sci., vol. 11, no. 9, 

2021, doi: 10.3390/app11093863. 

[29] H. J. Al Dawasari, M. Bilal, M. Moinuddin, K. Arshad, and K. Assaleh, “Pre-trained Deep Learning Networks for Advanced 

Visible Imagery Drone Detection and Recognition,” Proc. - 2023 15th IEEE Int. Conf. Comput. Intell. Commun. Networks, CICN 
2023, pp. 316–320, 2023, doi: 10.1109/CICN59264.2023.10402291. 

[30] S. Muhammad Saqib et al., “MobVGG: Ensemble technique for birds and drones prediction,” Heliyon, vol. 10, no. 21, 2024, 

doi: 10.1016/j.heliyon.2024.e39537. 
[31] M. Tripathi, “Analysis of Convolutional Neural Network based Image Classification Techniques,” J. Innov. Image Process., vol. 

3, no. 2, pp. 100–117, 2021, doi: 10.36548/jiip.2021.2.003. 

[32] P. Aggarwal, N. K. Mishra, B. Fatimah, P. Singh, A. Gupta, and S. D. Joshi, “COVID-19 image classification using deep learning: 

Advances, challenges and opportunities,” Comput. Biol. Med., vol. 144, no. November 2021, 2022, doi: 
10.1016/j.compbiomed.2022.105350. 

[33] A. E. Ilesanmi and T. O. Ilesanmi, “Methods for image denoising using convolutional neural network: a review,” Complex Intell. 

Syst., vol. 7, no. 5, pp. 2179–2198, 2021, doi: 10.1007/s40747-021-00428-4. 

[34] G. R. Kumar, J. Jeyasudha, G. Ravi, T. Jagadesh, and G. K. Madhura, “Wireless Capsule Endoscopy Bleeding Images 
Classification using CNN Based Model,” 2023 Int. Conf. Evol. Algorithms Soft Comput. Tech. EASCT 2023, pp. 33675–33688, 

2023, doi: 10.1109/EASCT59475.2023.10393338. 

[35] A. Wanto, Y. Yuhandri, and O. Okfalisa, “RetMobileNet: A New Deep Learning Approach for Multi-Class Eye Disease 

Identification,” Rev. d’Intelligence Artif., vol. 38, no. 4, pp. 1055–1067, 2024, doi: 10.18280/ria.380401. 

https://hostjournals.com/bulletincsr
https://doi.org/10.47065/bulletincsr.v5i4.545
https://creativecommons.org/licenses/by/4.0/


BULLETIN OF COMPUTER SCIENCE RESEARCH 
ISSN 2774-3659  (Media Online) 

Vol 5, No 4, June 2025 | Hal 372-381 
https://hostjournals.com/bulletincsr 

DOI: 10.47065/bulletincsr.v5i4.545 

Copyright © 2025 The Author, Page 380  
This Journal is licensed under a Creative Commons Attribution 4.0 International License 

[36] M. Shafiq and Z. Gu, “Deep Residual Learning for Image Recognition: A Survey,” Appl. Sci., vol. 12, no. 18, pp. 1–43, 2022, 

doi: 10.3390/app12188972. 
[37] M. M. Taye, “Theoretical Understanding of Convolutional Neural Network: Concepts, Architectures, Applications, Future 

Directions,” Computation, vol. 11, no. 3, 2023, doi: 10.3390/computation11030052. 

[38] X. Pan, Z. Luo, and L. Zhou, “Comprehensive Survey of State-of-the-Art Convolutional Neural Network Architectures and Their 

Applications in Image Classification,” Innov. Appl. Eng. Technol., no. February 2022, pp. 1–16, 2022, doi: 
10.62836/iaet.v1i1.1006. 

[39] M. A. Rostami, B. Balmaki, L. A. Dyer, J. M. Allen, M. F. Sallam, and F. Frontalini, “Efficient pollen grain classification using 

pre-trained Convolutional Neural Networks: a comprehensive study,” J. Big Data, vol. 10, no. 1, 2023, doi: 10.1186/s40537-

023-00815-3. 
[40] X. Renjun, Y. Junliang, W. Yi, and S. Mengcheng, “Fault Detection Method Based on Improved Faster R-CNN: Take ResNet-

50 as an Example,” Geofluids, vol. 2022, 2022, doi: 10.1155/2022/7812410. 

[41] T. Chen, H. Qin, X. Li, W. Wan, and W. Yan, “A Non-Intrusive Load Monitoring Method Based on Feature Fusion and SE-

ResNet,” Electron., vol. 12, no. 8, 2023, doi: 10.3390/electronics12081909. 
[42] Y. Y. Zheng, H. X. Huang, and J. M. Chen, “Comparative analysis of various models for image classification on Cifar-100 

dataset,” J. Phys. Conf. Ser., vol. 2711, no. 1, 2024, doi: 10.1088/1742-6596/2711/1/012015. 

[43] P. Tchatchoua, G. Graton, M. Ouladsine, and J. F. Christaud, “Application of 1D ResNet for Multivariate Fault Detection on 

Semiconductor Manufacturing Equipment †,” Sensors, vol. 23, no. 22, pp. 1–19, 2023, doi: 10.3390/s23229099. 
[44] K. K. Patro, J. P. Allam, M. Hammad, R. Tadeusiewicz, and P. Pławiak, “SCovNet: A skip connection-based feature union deep 

learning technique with statistical approach analysis for the detection of COVID-19,” Biocybern. Biomed. Eng., vol. 43, no. 1, 

pp. 352–368, 2023, doi: 10.1016/j.bbe.2023.01.005. 

[45] D. Sarwinda, R. H. Paradisa, A. Bustamam, and P. Anggia, “Deep Learning in Image Classification using Residual Network 
(ResNet) Variants for Detection of Colorectal Cancer,” Procedia Comput. Sci., vol. 179, no. 2019, pp. 423–431, 2021, doi: 

10.1016/j.procs.2021.01.025. 

[46] L. H. Shehab, O. M. Fahmy, S. M. Gasser, and M. S. El-Mahallawy, “An efficient brain tumor image segmentation based on 

deep residual networks (ResNets),” J. King Saud Univ. - Eng. Sci., vol. 33, no. 6, pp. 404–412, 2021, doi: 
10.1016/j.jksues.2020.06.001. 

[47] F. Li et al., “Mask DINO: Towards A Unified Transformer-based Framework for Object Detection and Segmentation,” Proc. 

IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 2023-June, pp. 3041–3050, 2023, doi: 

10.1109/CVPR52729.2023.00297. 
[48] D. Liu, Z. Wang, and A. Liang, “MiM-UNet: An efficient building image segmentation network integrating state space models,” 

Alexandria Eng. J., vol. 120, no. December 2024, pp. 648–656, 2025, doi: 10.1016/j.aej.2025.02.035. 

[49] Y. Yu et al., “Techniques and Challenges of Image Segmentation: A Review,” Electron., vol. 12, no. 5, 2023, doi: 

10.3390/electronics12051199. 
[50] S. A. Hasanah, A. A. Pravitasari, A. S. Abdullah, I. N. Yulita, and M. H. Asnawi, “A Deep Learning Review of ResNet 

Architecture for Lung Disease Identification in CXR Image,” Appl. Sci., vol. 13, no. 24, 2023, doi: 10.3390/app132413111. 

[51] W. Wu, L. Huo, G. Yang, X. Liu, and H. Li, “Research into the Application of ResNet in Soil: A Review,” Agric., vol. 15, no. 

6, 2025, doi: 10.3390/agriculture15060661. 
[52] S. K. Mathivanan, S. Sonaimuthu, S. Murugesan, H. Rajadurai, B. D. Shivahare, and M. A. Shah, “Employing deep learning and 

transfer learning for accurate brain tumor detection,” Sci. Rep., vol. 14, no. 1, pp. 1–15, 2024, doi: 10.1038/s41598-024-57970-

7. 

[53] J. Isohanni, “Customised ResNet architecture for subtle color classification,” Int. J. Comput. Appl., 2025, doi: 
10.1080/1206212X.2025.2465727. 

[54] S. Vidivelli, P. Padmakumari, C. Parthiban, A. DharunBalaji, R. Manikandan, and A. H. Gandomi, “Optimising deep learning 

models for ophthalmological disorder classification,” Sci. Rep., vol. 15, no. 1, p. 3115, 2025, doi: 10.1038/s41598-024-75867-3. 

[55] R. Kundu, P. K. Singh, S. Mirjalili, and R. Sarkar, “COVID-19 detection from lung CT-Scans using a fuzzy integral-based CNN 
ensemble,” Comput. Biol. Med., vol. 138, no. September, pp. 1–14, 2021, doi: 10.1016/j.compbiomed.2021.104895. 

[56] Q. Zhang, K. Zhang, K. Pan, and W. Huang, “Image defect classification of surface mount technology welding based on the 

improved ResNet model,” J. Eng. Res., vol. 12, no. 2, pp. 154–162, 2024, doi: 10.1016/j.jer.2024.02.007. 

[57] A. Manna, N. Upasani, S. Jadhav, R. Mane, R. Chaudhari, and V. Chatre, “Bird Image Classification using Convolutional Neural 
Network Transfer Learning Architectures,” Int. J. Adv. Comput. Sci. Appl., vol. 14, no. 3, pp. 854–864, 2023, doi: 

10.14569/IJACSA.2023.0140397. 

[58] R. Maulana, R. Dwi, Z. Putri, S. Fitriani, M. Sihaloho, and S. Mulyana, “Implementasi Algoritma Convolutional Neural Network 

Dalam Mengklasifikasi Jenis Burung,” J. Creat. Student Res., vol. 1, no. 6, pp. 221–231, 2023, [Online]. Available: 
https://doi.org/10.55606/jcsrpolitama.v1i6.2966 

[59] R. M. Narayanan, B. Tsang, and R. Bharadwaj, “Classification and Discrimination of Birds and Small Drones Using Radar 

Micro-Doppler Spectrogram Images †,” Signals, vol. 4, no. 2, pp. 337–358, 2023, doi: 10.3390/signals4020018. 
[60] A. Coluccia et al., “Drone vs. Bird detection: Deep learning algorithms and results from a grand challenge,” Sensors, vol. 21, no. 

8, pp. 1–27, 2021, doi: 10.3390/s21082824. 

[61] E. Seifert et al., “Influence of drone altitude, image overlap, and optical sensor resolution on multi-view reconstruction of forest 

images,” Remote Sens., vol. 11, no. 10, 2019, doi: 10.3390/rs11101252. 
[62] A. Whitworth, C. Pinto, J. Ortiz, E. Flatt, and M. Silman, “Flight speed and time of day heavily influence rainforest canopy 

wildlife counts from drone-mounted thermal camera surveys,” Biodivers. Conserv., vol. 31, no. 13–14, pp. 3179–3195, 2022, 

doi: 10.1007/s10531-022-02483-w. 

[63] H. Alaeddine and M. Jihene, “Deep Residual Network in Network,” Comput. Intell. Neurosci., vol. 2021, pp. 1–9, 2021, doi: 
10.1155/2021/6659083. 

[64] S. Mekruksavanich, A. Jitpattanakul, K. Sitthithakerngkiet, P. Youplao, and P. Yupapin, “ResNet-SE: Channel Attention-Based 

Deep Residual Network for Complex Activity Recognition Using Wrist-Worn Wearable Sensors,” IEEE Access, vol. 10, pp. 

51142–51154, 2022, doi: 10.1109/ACCESS.2022.3174124. 

https://hostjournals.com/bulletincsr
https://doi.org/10.47065/bulletincsr.v5i4.545
https://creativecommons.org/licenses/by/4.0/


BULLETIN OF COMPUTER SCIENCE RESEARCH 
ISSN 2774-3659  (Media Online) 

Vol 5, No 4, June 2025 | Hal 372-381 
https://hostjournals.com/bulletincsr 

DOI: 10.47065/bulletincsr.v5i4.545 

Copyright © 2025 The Author, Page 381  
This Journal is licensed under a Creative Commons Attribution 4.0 International License 

[65] J. Man and G. Sun, “A Residual Learning-Based Network Intrusion Detection System,” Secur. Commun. Networks, vol. 2021, 

2021, doi: 10.1155/2021/5593435. 
[66] M. Eser, M. Bilgin, E. T. Yasin, and M. Koklu, “Using pretrained models in ensemble learning for date fruits multiclass 

classification,” J. Food Sci., vol. 90, no. March, p. e70136, 2025, doi: 10.1111/1750-3841.70136. 

[67] C. Cheng and G. T. Zhang, “Deep learning method based on physics informed neural network with Resnet block for solving fluid 

flow problems,” Water (Switzerland), vol. 13, no. 4, pp. 1–17, 2021, doi: 10.3390/w13040423. 
[68] S. Showkat and S. Qureshi, “Chemometrics and Intelligent Laboratory Systems Ef fi cacy of Transfer Learning-based ResNet 

models in Chest X-ray image classi fi cation for detecting COVID-19 Pneumonia,” Chemom. Intell. Lab. Syst., vol. 224, no. 

March, p. 104534, 2022, [Online]. Available: https://doi.org/10.1016/j.chemolab.2022.104534 

[69] A. Younis et al., “Abnormal Brain Tumors Classification Using ResNet50 and Its Comprehensive Evaluation,” IEEE Access, 
vol. 12, no. June, pp. 78843–78853, 2024, doi: 10.1109/ACCESS.2024.3403902. 

[70] A. Heikal, A. El-Ghamry, S. Elmougy, and M. Z. Rashad, “Fine tuning deep learning models for breast tumor classification,” 

Sci. Rep., vol. 14, no. 1, pp. 1–26, 2024, doi: 10.1038/s41598-024-60245-w. 

[71] K. Kansal, T. B. Chandra, and A. Singh, “ResNet-50 vs. EfficientNet-B0: Multi-Centric Classification of Various Lung 
Abnormalities Using Deep Learning ‘session id: ICMLDsE.004,’” Procedia Comput. Sci., vol. 235, pp. 70–80, 2024, doi: 

10.1016/j.procs.2024.04.007. 

[72] R. Garg, V. G. D. Rayudu, and R. Singh, “ScienceDirect ScienceDirect Urban Land-Use Mapping and Classification using Deep 

Convolutional Neural Network with Multispectral Drone Imagery,” 2025. 
[73] L. Malihi and G. Heidemann, “Efficient and Controllable Model Compression through Sequential Knowledge Distillation and 

Pruning,” Big Data Cogn. Comput., vol. 7, no. 3, 2023, doi: 10.3390/bdcc7030154. 

[74] M. Zhou et al., “Improving animal monitoring using small unmanned aircraft systems (sUAS) and deep learning networks,” 

Sensors, vol. 21, no. 17, pp. 1–13, 2021, doi: 10.3390/s21175697. 
[75] H. Rakshit and P. Bagheri Zadeh, “A Novel Approach to Detect Drones Using Deep Convolutional Neural Network 

Architecture,” Sensors, vol. 24, no. 14, 2024, doi: 10.3390/s24144550. 

[76] J. Brown, Z. Gharineiat, and N. Raj, “CNN Based Image Classification of Malicious UAVs,” Appl. Sci., vol. 13, no. 1, 2023, doi: 

10.3390/app13010240. 
[77] C. W. Lin, S. Hong, M. Lin, X. Huang, and J. Liu, “Bird posture recognition based on target keypoints estimation in dual-task 

convolutional neural networks,” Ecol. Indic., vol. 135, 2022, doi: 10.1016/j.ecolind.2021.108506. 

[78] S. Kim, M. Chae, J. Lee, and H. Lee, “Advanced Pharmaceutical Recognition System Based on Deep Learning for Mobile 

Medication Identification,” 2025. 
[79] M. Mazni, A. R. Husain, M. I. Shapiai, I. S. Ibrahim, D. W. Anggara, and R. Zulkifli, “An investigation into real-time surface 

crack classification and measurement for structural health monitoring using transfer learning convolutional neural networks and 

Otsu method,” Alexandria Eng. J., vol. 92, no. October 2023, pp. 310–320, 2024, doi: 10.1016/j.aej.2024.02.052. 

[80] J. T. Sliwinski, M. Mandl, and H. M. Stoll, “Machine learning application to layer counting in speleothems,” Comput. Geosci., 
vol. 171, no. December 2022, 2023, doi: 10.1016/j.cageo.2022.105287. 

[81] W. Zaman, M. F. Siddique, S. Ullah, F. Saleem, and J. M. Kim, “Hybrid Deep Learning Model for Fault Diagnosis in Centrifugal 

Pumps: A Comparative Study of VGG16, ResNet50, and Wavelet Coherence Analysis,” Machines, vol. 12, no. 12, 2024, doi: 

10.3390/machines12120905. 
[82] M. Krichen, “Convolutional Neural Networks: A Survey,” Computers, vol. 12, no. 8, pp. 1–41, 2023, doi: 

10.3390/computers12080151. 

[83] Kaggle, “Bird vs Drone,” Distinguishing the Skies: A Dataset for Drone vs Bird Classification. 

 
 

https://hostjournals.com/bulletincsr
https://doi.org/10.47065/bulletincsr.v5i4.545
https://creativecommons.org/licenses/by/4.0/

