BULLETIN OF COMPUTER SCIENCE RESEARCH ISSN 2774-3639 (Media Online)

Vol 4, No 4, Juni 2024 | Hal 356-367 https://hostjournals.com/bulletincsr DOI: 10.47065/bulletincsr.v4i4.358

Pemanfaatan Pengenalan Citra Kematengan Jengkol Untuk Saran Masakan Menggunakan Metode Algoritma Deep Learning

Handika Sanjaya¹, Rudi Kurniawan^{2,*}, Rusdiyanto²

¹Fakultas Ilmu Teknik, Program Studi Rekayasa Sistem Komputer, Universitas Bina Insan, Lubuklinggau, Indonesia
²Fakultas Ilmu Teknik, Program Studi Informati, Universitas Bina Insan, Lubuklinggau, Indonesia
Email: ¹handikasanjaya200402@gmail.com, ^{2,*}rudikurniawan@univbinainsan.ac.id, ³rusdiyanto@univbinainsan.ac.id
Email Penulis Korespondensi: rudikurniawan@univbinainsan.ac.id

Abstrak—Saat ini perkembangan teknologi semakin pesat. Salah satunya dibidang teknologi kecerdasaan buatan dan computer vision. salah satu cabang ilmu yang dipelajari yang ada pada teknologi kecerdasaan buatan dan computer vision. Salah satunya adalah deep learning yang mana berpokus pada penggunaan jaringan syaraf tiruan yang mempelajari tentang klasifikasi dan pendeteksi objek secara langsung melalui gambar maupun video. Dengan adanya deep learning, peneliti berpokus pada pengembangan sistem pendeteksi kematengan jengkol menggunakan metode deep learning. penelitian ini menggunakan sejumlah 1500 gambar jengkol sebagai dataset. dan menggunakan roboflow sebagai labelling dan hasil dari labelling tersebut akan dibagi menjadi 3 jenis kelas yaitu jengkol muda, sedang dan tua. untuk training dataset jengkol itu sendiri menggunakan algoritma YOLOV5. Selanjutnya tahap pengujian dimana pendekatan yang dipakai adalah confusion matrix, classification report, Mean Squared Error (MSE), dan Root Mean Squared Error (RMSE) serta nilai dari Fi-Score Dimana tujuan dari pengujian ini untuk melihat hasil presisi dan mengidentifikasi akurasi yang optimal pada data dari model yang sudah dilatih yang dapat dicapai oleh sistem yang sedang di uji ataupun dievaluasi yang melibatkan penyusunan laporan klasifikasi kedalam tiga kategori muda, sedang dan tua berdasarkan ciri-ciri visual yang dapat dideteksi oleh algoritma deep learning. dari hasil pengujian dan evaluasi secara realtime yang didapatkan pada penelitian ini memiliki nilai akurasi sebesar 80%.

Kata Kunci: Jengkol; Pendeteksi; Deep Learning; Dataset.

Abstract—Currently, technological development is progressing rapidly. One of the areas is in artificial intelligence and computer vision technology. One of the branches of science studied in artificial intelligence and computer vision technology is deep learning, which focuses on the use of artificial neural networks that learn about classification and object detection directly through images and videos. With the advent of deep learning, researchers are focusing on developing a jengkol (dogfruit) ripeness detection system using deep learning methods. This research uses 1500 jengkol images as a dataset and uses Roboflow for labeling. The results of the labeling will be divided into 3 types of classes: young, medium, and old jengkol. The YOLOV5 algorithm is used for training the jengkol dataset. The next stage is testing, where the approaches used are confusion matrix, classification report, Mean Squared Error (MSE), and Root Mean Squared Error (RMSE), as well as the F1-Score value. The purpose of this testing is to see the precision results and identify the optimal accuracy on data from the trained model that can be achieved by the system being tested or evaluated, which involves compiling a classification report into three categories: young, medium, and old, based on visual characteristics that can be detected by the deep learning algorithm. From the real-time testing and evaluation results obtained in this study, the accuracy value is 80%.

Keywords: Clove; Detection; Deep Learning; Dataset

1. PENDAHULUAN

Indonesia merupakan salah satu negara yang memiliki beragam cita rasa kuliner Makanan tradisional[1], salah satu makanan khas tradisional Indonesia yang sangat populer dan digemari masyarakat ialah makanan yang berasal dari Jengkol [2]. Jengkol sering diolah masyarakat Indonesia menjadi berbagai macam resep makanan seperti kerupuk, semur, rendang, sambal dan jenis makanan lainnya. Jengkol merupakan salah satu jenis polong-polongan yang tumbuh di wilayah Asia Tenggara yang beriklim tropis yang dimanfaatkan untuk berbagai olahan makanan [3]. Di negara Indonesia saat ini produksi pertanian Jengkol sangat berkembang pesat di berbagai daerah. Berdasarkan data dari Badan Pusat Statistik (BPS), produksi jengkol di Indonesia mencapai 129,14 ribu ton pada tahun 2022 dan mengalami peningkatan sebesar 33,24% dibandingkan dengan tahun sebelumnya yang hanya mencapai 96,9 ribu ton [4].

Dalam waktu setahun, petani Indonesia memanen buah jengkol sebanyak tiga kali dalam sekali masa panen. Tetapi sebelum memanen dan memasarkan jengkol, petani mengecek terlebih dahulu buah jengkol untuk melihat warna isi buah yang ada di dalam jengkol tersebut agar bisa memisahkan antara jengkol muda, sedang, dan tua. Di dalam buah jengkol terdapat 3 jenis kondisi, yaitu jengkol muda yang memiliki struktur lebih lembut pada dagingnya serta memiliki warna kulit pada ari-ari berwarna kuning terang, jengkol sedang atau setengah tua yang memiliki struktur warna kuning dengan bercak merah dan sedikit lebih keras serta lebih besar ukurannya dibandingkan dengan jengkol muda, dan jengkol tua yang memiliki struktur lebih keras dibandingkan dengan jengkol muda dan setengah tua serta memiliki warna merah cerah.

Di masyarakat Indonesia, masakan jengkol memiliki beragam menu masakan. Dari beberapa menu masakan jengkol, ada beberapa kriteria jenis jengkol yang harus dipenuhi agar masakan jengkol tersebut pas digunakan sebagai rekomendasi menu masakan, seperti jengkol muda yang memiliki warna kuning dan tekstur lebih lembut serta lebih kecil ukuran sehingga bagus sebagai rekomendasi menu masakan ulapan makanan. Namun, ada juga jengkol setengah tua atau sedang yang memiliki warna kuning bercampur merah dan memiliki ukuran yang lebih besar dari jengkol muda serta tekstur lebih lembut dibandingkan dengan jengkol tua sehingga bagus sebagai rekomendasi masakan sambel jengkol, tumis jengkol. Selain itu, ada juga jengkol tua yang memiliki warna merah cerah, ukuran lebih besar, dan sedikit keras

ISSN 2774-3639 (Media Online)

Vol 4, No 4, Juni 2024 | Hal 356-367 https://hostjournals.com/bulletincsr DOI: 10.47065/bulletincsr.v4i4.358

dibandingkan dengan jengkol muda maupun sedang sehingga bagus direkomendasikan sebagai menu masakan rendang, semur jengkol, dan kerupuk jengkol.

Untuk merekomendasi menu di atas, masyarakat harus bisa mengetahui warna dan tekstur jengkol agar bisa mengetahui tingkat kematangan jengkol baik yang muda, sedang, dan tua agar bisa memasak menu jengkol tersebut dengan pas sesuai dengan rekomendasi masakan yang diberikan. Namun, dari beberapa hasil kuesioner penelitian yang didapatkan di masyarakat yang ditargetkan kepada ibu rumah tangga di RT 03 Kelurahan Lubuk Kupang yang memiliki jumlah data jawaban dari 50 data nama ibu rumah tangga, masih ada 76% ibu rumah tangga yang belum bisa merekomendasikan masakan jengkol sesuai dengan tingkat kematangan jengkol, dan masih ada 74% yang belum bisa membedakan tingkat kematangan jengkol baik yang muda, sedang, dan tua. Maka dari itu, untuk mengatasi permasalahan di atas yang ada pada masyarakat, dibutuhkan sebuah teknologi bernama artificial intelligence (AI) untuk mendeteksi kondisi jengkol muda, sedang, dan tua dengan benar [5].

Salah satu cabang dalam ilmu artificial intelligence ialah deep learning yang berfokus pada penggunaan jaringan saraf tiruan [6]. Deep Learning merupakan salah satu bagian dari metode Machine Learning yang berpokus pada pengguna jaringan saraf Tiruan (JST) atau merupakan kelanjutan dari konsep JST [7]. Di dalam deep learning, komputer mempelajari ilmu tentang klasifikasi secara langsung melalui gambar [8]. Inti dari deteksi objek adalah menggabungkan jenis kecerdasan ini ke dalam sistem komputer [9]. Salah satu algoritma yang menggunakan pendekatan metode deep learning adalah You Only Look Once (YOLO) sebagai metode untuk pendeteksian objek [10]. Pada bulan april 2020, diperkenalkan YOLOv5 sebagai model pendeteksi objek generasi kelima [11]. YOLO merupakan sebuah sistem deteksi objek yang inovatif yang beroperasi secara real-time [12]. Dalam implementasinya, YOLO memanfaatkan satu jaringan saraf tunggal (single neural network) untuk melakukan pendeteksian dan pengenalan objek dengan kemampuan langsung memprediksi kotak pembatas (bounding box) serta probabilitas kelasnya [13].

Confusion matrix adalah alat pengukuran berbentuk matriks yang digunakan untuk mengevaluasi sebuah nilai keakuratan klasifikasi dalam penerapan dengan algoritma yang digunakan [14]. confusion matriks digunakan untuk perhitungan nilai pada presisi, recall, dan akurasi, serta nilai-nilai umum dalam matriks tersebut disajikan dalam bentuk persentase (%) [15].

Masalah utama yang dihadapi adalah ketidakmampuan sebagian besar masyarakat, khususnya ibu rumah tangga, dalam membedakan tingkat kematangan jengkol. Hal ini penting karena tingkat kematangan jengkol sangat mempengaruhi jenis masakan yang dihasilkan. Tanpa kemampuan untuk membedakan jengkol muda, sedang, dan tua, masakan yang dihasilkan mungkin tidak sesuai dengan standar kualitas yang diharapkan, yang dapat mengurangi kepuasan konsumen dan merugikan penjual.

Proses yang digunakan untuk menyelesaikan masalah ini melibatkan pengembangan sebuah sistem yang dapat mendeteksi tingkat kematangan jengkol secara otomatis menggunakan algoritma YOLO. Sistem ini akan dilatih menggunakan dataset gambar jengkol dengan berbagai tingkat kematangan, dan akan mampu memberikan prediksi yang akurat tentang kondisi jengkol (muda, sedang, atau tua).

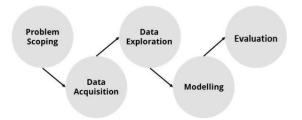
Proses deteksi tingkat kematangan jengkol menggunakan YOLO berperan penting dalam memberikan solusi otomatis yang dapat digunakan oleh petani, penjual, dan konsumen untuk memastikan bahwa jengkol yang digunakan dalam masakan sesuai dengan tingkat kematangan yang diinginkan. Dengan demikian, sistem ini dapat meningkatkan efisiensi dalam pemrosesan dan penjualan jengkol serta memastikan kualitas masakan yang lebih konsisten.

Metode/Algoritma yang Digunakan digunakan untuk menyelesaikan masalah ini adalah You Only Look Once (YOLO). YOLO adalah algoritma deteksi objek yang cepat dan akurat yang mampu mendeteksi berbagai objek dalam satu kali penglihatan. Dalam konteks penelitian ini, YOLO akan digunakan untuk mendeteksi tingkat kematangan jengkol dengan memprediksi kotak pembatas dan probabilitas kelas dari setiap jengkol yang dianalisis.

Beberapa penelitian terdahulu telah menggunakan teknologi AI dan deep learning untuk deteksi objek dalam berbagai bidang, seperti pertanian dan industri makanan. Namun, penelitian yang secara spesifik fokus pada deteksi tingkat kematangan jengkol masih sangat terbatas. GAP penelitian ini adalah kurangnya studi yang mendalam dan aplikasi praktis dari teknologi AI dalam mendeteksi tingkat kematangan jengkol. Penelitian ini bertujuan untuk mengisi GAP tersebut dengan mengembangkan dan mengimplementasikan sistem deteksi yang akurat dan efisien menggunakan algoritma YOLO, yang diharapkan dapat memberikan kontribusi signifikan bagi industri pertanian dan kuliner di Indonesia.

Berdasarkan penjelasan di atas, dalam kerangka penelitian ini akan dihasilkan suatu sistem atau solusi untuk mendeteksi kematangan buah jengkol menggunakan algoritma YOLO.

2. METODOLOGI PENELITIAN


2.1 Tahapan Penelitian

Metode yang diterapkan dalam pengembangan sistem pada penelitian ini adalah metode AI Project Cycle. Tahapan AI Project Cycle dapat dikelompokkan menjadi enam tahap seperti yang diperlihatkan dalam gambar 1 berikut ini:

ISSN 2774-3639 (Media Online)

Vol 4, No 4, Juni 2024 | Hal 356-367 https://hostjournals.com/bulletincsr DOI: 10.47065/bulletincsr.v4i4.358

Gambar 1. AI Project Cycle

Berdasarkan kerangka kerja pada gambar 1, maka masing-masing langkahnya dapat diuraikan seperti dibawah ini:

a. Problem Scoping

Pada penelitian ini ada beberapa Persoalan sentral yang di hadapai masyarakat yang didapatkan melalui kuesiner ibu rumah tangga di rt 03 kelurahan lubuk kupang adalah ada 74% ibu rumah tangga yang belum bisa merekomendasikan masakan jengkol, dan 76% belum bisa membedakantingkat kematengan jengkol baik yang muda, sedang, dan tua. Apalagi sejauhini belum ada sistem yang bisa mengetahui tingkat kematangan jengkol secara real time dengan menggunakan teknologi algoritma deep learning. Untuk menjawab tantangan tersebut, solusinya adalah dengan mengembangkan sistem yang mampu mendeteksi tingkat kematangan jengkol secara otomatis menggunakan algoritma deep learning, sesuai dengan poros penelitian yang berjudul."pemanfaatan pengenalan citra kematengan jengkol untuk saran masakan menggunakan metode algoritma deep learning" yang diusulkan oleh peneliti [16].

b. Data Acquisition (pengumpulan dataset)

Pada tahap ini peneliti melakukan pengumpulan data yang diperlukanuntuk memperoleh informasi pengembangan projek. Data tersebut dapat berupa informasi, fakta atau statistik yang dikumpulkan bersama untuk tujuan analisis atau referensi. Saat ingin mengembangkan projek kecerdasan buatan prediktif, langkah pertama adalah melatih model menggunakan data. Namun, data yang digunakan untuk melatih modelharus sesuai dengan masalah yang diidentifikasi sebelumnya agar dapat memberikan hasil yang efektif. Berbagai sumber data yang digunakan antara lain website, sensor, survei, teknik web scraping, kamera, API, dan masih banyak lagi. Pengumpulan data yang bersumber dari kamera memiliki 3 sampel data yang terdiri dari foto jengkol muda, sedang dan tua. yang memili total 1356 foto, terbagi menjadi 446 foto untuk kondisi jengkol muda, 470 foto untuk kondisi jengkol sedang, dan 438 foto untuk kondisi jengkol tua.

c. Data exploration

Pada tahap ini memahami karakteristik dan cara mengolah datasetyang diperoleh melalui preprocessing. proses karakteristik yang di miliki objek berupa warna kulit ari-ari pada jengkol, jengkol muda memiliki karakteristik warna kulit berwarna kuning, sedangkan jengkol sedang memiliki karakteristik warna kulit berwarna kuning yang memiliki bercak kemerahan dan jengkol tua memiliki karakteristik warna kulit merah. dan khususnya proses pelabelan dan pengubahan ukuran gambar [17].

d. Modelling

Langkah ini merupakan proses implementasi algoritma ke dalam bahasa pemrograman sebagai bagian dari pelatihan model pembelajaran mesin (training phase). Tujuannya adalah untuk menciptakan kemampuan pengambilan keputusan atau melakukan prediksi. Pada penelitian ini metode algoritma yang digunakan adalah YOLOv5.

e. Evalution

Tahap evaluasi merupakan tahap selanjutnya setelah model mencapai tahap pelatihan. Pada tahap ini, model dievaluasi dengan fokus pada keakuratan data yang diproses selama pelatihan. Apabila hasil evaluasi menunjukkan model belum menghasilkan kinerja yang sesuai, maka tahap pelatihan akan diulangi untuk meningkatkan kinerja model. Setelah model dianggap sudah berfungsi dengan cukup baik,langkah selanjunya adalah melanjutkan ke tahap implementasi atau penerarapan.

2.2 Teknik Pengumpulan Data dan Analisis Data

Teknik yang digunakan dalam penelitian ini adalah

- 1. Studi Pustaka, yaitu mengumpulkan dan mempelajari penelitian-penelitian serta jurnal terdahulu yang berkaitan Deep Learning.
- 2. Wawancara dan dataset jengkol, untuk mendapatkan informasi kebutuhan pengguna secara benar dan jelas maka dilakukan proses wawancara. Wawancara dilakukan pada pedagang, warung, ibu rumah tangga dan petani jengkol sekaligus mengambil foto dataset jengkol serta mengelompokkan kedalam kategori jengkol muda, sedang dan tua.

2.2 Metode Pengujian Sistem

Dalam penelitian ini pendekatan yang dipakai untuk menguji sistem adalah confusion matrix, classification report, Mean Squared Error (MSE), dan Root Mean Squared Error (RMSE) serta nilai dari Fi-Score. Penentuan ini bertujuan untuk melihat hasil presisi dan mengidentifikasi akurasi optimal pada data dari model yang sudah dilatih yang dapat dicapai oleh sistem yang sedang di uji ataupun dievaluasi yang melibatkan penyusunan laporan klasifikasi, yang akan menampilkan tingkat akurasi dari penggunaan metode klasifikasi YOLOv5 yang telah diimplementasikan sebelumnya.

ISSN 2774-3639 (Media Online)

Vol 4, No 4, Juni 2024 | Hal 356-367 https://hostjournals.com/bulletincsr DOI: 10.47065/bulletincsr.v4i4.358

Didalam Confusion matrix terdapat beberapa nilai yang akan dihasilkan didalam tabel diantaranya True Positive (TP), False Positiv (FP), False Negativ (FN), dan True Negativ (TN) [18].

Untuk melihat ilustrasi pada tabel confusion matrix dapat dilihat pada gambar 2 dibawah ini :

		Model Predictions				
		Positive	Negative			
	Positive	True Positive	False Positive			
Label	Negative	False Negative	True Negative			

Gambar 2. Confusion matrix.

Berdasarkan confusion matrix pada gambar 2 dapat dijelaskan sebagai berikut :

- a. True Positives (TP): Ini merujuk pada jumlah data yang memang sebenarnya termasuk dalam kelas positif, dan model berhasil memprediksi mereka dengan benar sebagai kelas positif.
- b. True Negatives (TN): Jumlah data yang benar-benar termasuk dalam kelas negatif, dan model mampu memprediksi mereka secara tepat sebagai kelas negatif.
- c. False Positives (FP): Ini terjadi ketika data sebenarnya adalah kelas negatif, tetapi model keliru memprediksi mereka sebagai kelas positif. Kesalahan semacam ini dikenal sebagai "Type I error" atau kesalahan tipe I.
- d. False Negatives (FN): Merujuk pada data yang sebenarnya termasuk dalam kelas positif, namun model gagal memprediksi mereka sebagai kelas positif dan salah mengklasifikasikan sebagai kelas negatif.Kesalahan ini dikenal sebagai "Type II error" atau kesal.

Dengan menggunakan data confusion matrix, peneliti dapat memperoleh data lain yang berguna untuk mengukur performa sebuah model [19], diantaranya :

1. Akurasi

Dalam akurasi menggambarkan seberapa akurat prediksi dalam model yangdapat mengklasifikasan dengan benar dengan keselurahan data.

$$\frac{\text{TP+TN}}{\text{Total}} \tag{1}$$

2. Precision

Mengukur tingkat keakuratan hasil dari sebuah data yang diminta dengan memperhitungkan hasil yang diberikan oleh model yang melibatkan perbandingan antara jumlah true positive dengan jumlah total data yang memiliki label positive.

$$\frac{\text{TP}}{\text{TP+FP}} \tag{2}$$

3. Recall

Sebuah rasio yang memprediksi sebuah gambaran keberhasilan model dengan cara mengindikasikan sejauh mana persentase data kategori positif yang berhasil diklasifikasikan dengan benar oleh sistem.

$$\frac{\text{TP}}{\text{TP+FN}} \tag{3}$$

4. Fi Score

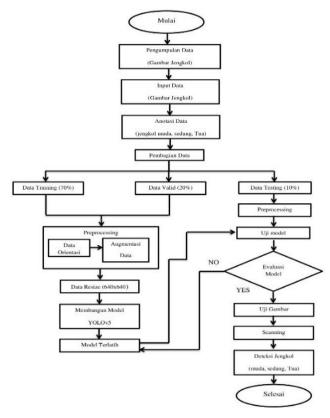
Perbandingan nilai rata-rata harmonik yang di dapatkan dari hasil nilai recalldan precision.

$$F1 - Score = 2 \frac{(Precessin*Recall)}{(Precesion+Recall)}$$
(4)

2.2 Arsitektur YOLO

Arsitektur YOLOv5 menggambarkan struktur dan desain yang diterapkan pada model deteksi objek YOLO versi kelima. Model ini akan digunakan untuk memahami bagaimana metode YOLOv5 bekerja dalam kontekspenelitian ini [20]. Proses awal dari struktur Yolo adala dengan mengumpulakn data berupa gambar jengkol sebanyak 1500 data gambar jengkol dengan menggunakan kamera handpone.setelah pengumpulan data selesai langka selanjuntya adalah penginputan data, peneliti mengginputkan data mengguna roboflow agar data tersebut bisa tersimpan dalam roboflow tersebut.setelah pengginputan selesai data tersebut akan di anotasi data dengan cara pelebalan gambar agar bisa membagi kelas pada data

ISSN 2774-3639 (Media Online)


Vol 4, No 4, Juni 2024 | Hal 356-367 https://hostjournals.com/bulletincsr DOI: 10.47065/bulletincsr.v4i4.358

tersebut. Setelah proses anotasi data selesai, proses selanjuntya pengelompokan data akan dilaksanakan dengan cara membagi data menjadi dua kelompok utama, yaitu data latih (training) dan data uji (testing).

Pembagian data berupa rasio yaitu 81:13:6, dimana 81% data training, 13% data valid dan 6% data testing. Setelah ketiga data terbagi langkah selanjutnya adalah data training dan valid dengan cara augementasi data dalam preprocessing yang bertujuan untuk memodifikasi sebuah citra dan bisa meningkatkan sebuah data yang berbeda. Setalah proses augemntasi data selesai, proses selanjutnya yaitu data resize berupa merubah ukuran gambar menjadi 640x640 pixel agar semua ukuran gambar pada jengkol bisa sama.

Setelah proses data resize selesai, setelah data resize selesai langkah selanjutnya membangun model sekaligus melatih model, setelah model terlatih peneliti menguji model tersebut kedalam data testing setelah model tersebut di uji maka tahap selanjutnya adalah evaluasi model dimana evaluasi ini digunakan untuk melihat berapa nilai akurasi yang di miliki, jika anilai akurasi melebih 80% maka peneliti uji gambar dengan menggarahakan objek jengkol ke kamera, lalu discaning oleh model agar bisa mendeteksi apakah jengkol tersebut masuk kedalam kelas muda, sedang atapun tua.akan tetapi jika nilai akurasi kurang dari 80% maka peneliti akan melatih kembali model tersebut agar bisa mendapatkan nilai akurasi 80% lebih.Adapun arsitektur YOLOv5 yang di gunakan dalam penelitian ini yang akan ditampilkan kedalam gambar 2 berikut:

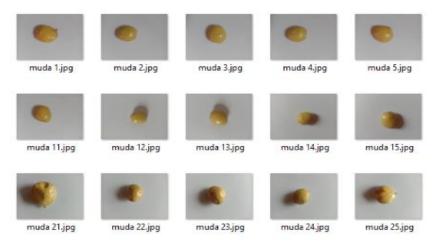
Gambar 2. Arsitektur YOLOv5

Berdasarkan gambar 2 arsitektur YOLOv5, peneliti dapat memahami alur kerja atau rancangan sistem YOLOv5yang akan di buat untuk mendeteksi kematengan pada jengkol secara realtime. Yang diawali dengan mengumpulkan data berupa gambar jengkol sebanyak 1500 data gambar jengkol dengan menggunakan kamera handpone.setelah pengumpulan data selesai langka selanjuntya adalah penginputan data, disini peneliti mengginputkan data mengguna roboflow agar data tersebut bisa tersimpan dalam roboflow tersebut.setelah pengginputan selesai data tersebut akan di anotasi data dengan cara pelebalan gambar agar bisa membagi kelas pada data tersebut. Setelah proses anotasi data selesai, proses selanjuntya pengelompokan data akan dilaksanakan dengan cara membagi data menjadi dua kelompok utama, yaitu data latih (training) dan data uji (testing). Disini peneliti melakukan pembagian data berupa rasio yaitu 81:13:6, dimana 81% data training, 13% data valid dan 6% data testing. Setelah ketiga data terbagi langkah selanjutnya adalah data training dan valid dengan cara augementasi data dalam preprocessing yang bertujuan untuk memodifikasi sebuah citra dan bisa meningkatkan sebuah data yang berbeda. Setalah proses augemntasi data selesai, proses selanjutnya yaitu data resize berupa merubah ukuran gambar menjadi 640x640 pixel agar semua ukuran gambar pada jengkol bisa sama. setelah proses data resize selesai, setelah data resize selesai langkah selanjutnya membangun model sekaligus melatih model, setelah model terlatih peneliti menguji model tersebut kedalam data testing setelah model tersebut di uji maka tahap selanjutnya adalah evaluasi model dimana evaluasi ini digunakan untuk melihat berapa nilai akurasi yang di miliki, jika anilai akurasi melebih 80% maka peneliti uji gambar dengan menggarahakan objek jengkol ke kamera, lalu discaning oleh model agar bisa mendeteksi apakah jengkol tersebut masuk kedalam kelas muda, sedang

ISSN 2774-3639 (Media Online) Vol 4, No 4, Juni 2024 | Hal 356-367

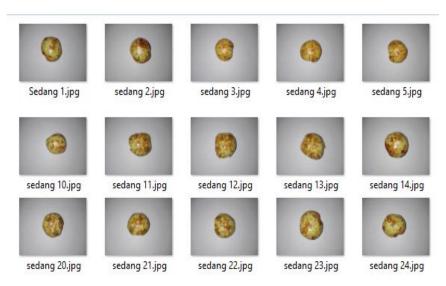
https://hostjournals.com/bulletincsr DOI: 10.47065/bulletincsr.v4i4.358

atapun tua.akan tetapi jika nilai akurasi kurang dari 80% maka peneliti akan melatih kembali model tersebut agar bisa mendapatkan nilai akurasi 80% lebih.


3. HASIL DAN PEMBAHASAN

3.1 Metodelogi Penelitian

Penelitian ini dilakukan dengan menerapkan metode kuantitatif dengan mengandalkan data primer dengan cara menjalankan kajian literatur, yang mencakup pencarian beragam referensi seperti artikel jurnal, buku, dan riset sebelumnya yang berkaitan dengan subjek penelitian. Lalu tahap penelitian berikurnya ialah observasi dimana observasi ini menggunakan metode pengamatan dengan cara mengamati secara langsung objek yang diteliti. Dari hasil observasi yang telah dilakukan oleh peneliti mengenai tingkat kematengan jengkol yang meneliti pada bagian warna kulit ari-ari didalam jengkol. Setelah itu proses berikutnya memberikan kuisoner penelitian terhadap masyarakat yang bertujuan untuk mendapatkan informasi permasalahan yang ada pada masyarakat serta pelabelan dan validasi data dengan menerapkan metodologi pengembangan sistem sebagai landasan untuk penelitian mengenai pemanfaatan pengenalan citra kematengan jengkol untuk saran masakan menggunakan metode algoritma deep learning.


3.1.1 Pengumpulan Dataset

Dalam penelitian ini, peneliti menggumpulkadata yang dikumpulkan mencakup foto pada isi dari jengkol muda, sedang, dan tua yang diambil secara langsung di kebun petani masyarakat lubuk kupang dan pedagang pasar simpang periuk yang diambil menggunakan kamera handphone android sebagai pengumpulan data pada isi jengkol tersebut. Data yang diperlukan adalah gambar jengkol muda, sedang dan tua yang dikumpulkan sebanyak 1356 gambar. Gambar 3,4 dan 5 dibawah ini adalah beberapa contoh dataset yang sudah dikumpulkan dalam penelitian ini:

Gambar 3. Dataset Muda

Berdasarkan gambar 3 memperlihatkan kumpulan foto jengkol yang masuk kedalam kelompok jengkol muda


Gambar 4. Dataset Sedang

ISSN 2774-3639 (Media Online) Vol 4, No 4, Juni 2024 | Hal 356-367

https://hostjournals.com/bulletincsr DOI: 10.47065/bulletincsr.v4i4.358

Berdasarkan gambar 4 memperlihatkan kumpulan foto jengkol yang masuk kedalam kelompok jengkol sedang

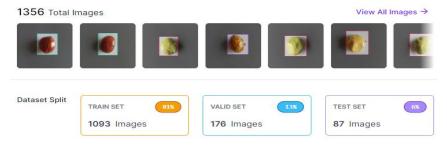
Gambar 5. Dataset Tua

Berdasarkan gambar 5 memperlihatkan kumpulan foto jengkol yang masuk kedalam kelompok jengkol tua

3.1.2 Labelling

Setelah proses pengumpulan data telah selesai, proses selanjutnya ialah melakukan proses labelling. Dalam penelitian ini penulis menggelompokan gambar tersebut kedalam tiga kelas yaitu jengkol muda, sedang dan tua. Gambar 6 berikut ini merupakan contoh pelebelan pada gambar jengkol yang telah dilakukan :

Gambar 6. Labelling Dataset


Berdasarkan dataset pada gambar 6 memperlihatkan proses labelling foto jengkol dimana peneliti menggunakan roboflow agar bisa memberikan pelabelan pada gambar jengkol yang mana setiap pelabelan pada gambar tersebut mengacu pada tahap dimana setiap gambar jengkol diberikan kelas agar bisa membedakan gambar sesuai dengan kelas yang diinginkan.

3.1.3 Resize foto

Pada penelitian ini tujuan dari Resize foto ialah untuk merubah semuah ukuran gambar yang berbeda di dalam dataset jengkol menjadi ukuran yang sama yaitu 640x640 pixel menggunakan roboflow agar dataset berukuran sama agar memudahkan mesin dalam training dataset. Mesin akan kesulitan training dataset jika pixel ukuran berbeda-beda.

3.1.4 Split Data

Pada platfrom roboflow, data yang telah di resize dan diberi label selanjutnya data akan dibagi menjadi 3 jenis yaitu 81% data training, 13% data validasi, 6% data test. Hal ini dilakukan dengan tujuan memudahkan proses training dataset, serta untuk mengurangi kemungkinan terjadinya overfitting, dan underfitting pada dataset. Dataset Split ditunjukkan pada gambar 7 dibawah ini:

Gambar 7. Split Data

ISSN 2774-3639 (Media Online)

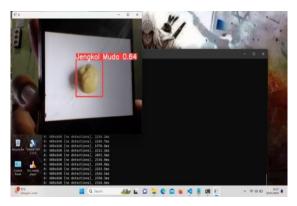
Vol 4, No 4, Juni 2024 | Hal 356-367 https://hostjournals.com/bulletincsr DOI: 10.47065/bulletincsr.v4i4.358

Berdasarkan gambar 7 memperlihatkan proses split data. Dataset jengkol sejumlah 1356 data gambar jengkol yang akan di Split data menjadi 3 yaitu:

- 1. 1093 gambar sebagai data train set
- 2. 176 gambar valid set
- 3. 87 gambar test set

3.1.5 Training Data

Setelah semua dataset yang dikumpulkan berhasil diimportkan ke dalam google colab, langkah selanjutnya adalah menjalankan proses pelatihan sebanyak 50 epocs, dimana proses dari pelatihan ini bertujuan untuk meningkatkan akurasi sistem, agar tidak terjadi kesalahan dalam mendeteksi objek kematengan jengkol pada dataset. Dalam tahap ini, saya menggunakan YOLOv5 yang telah di pre-trained. Proses training dataset di tunjukkan pada gambar 8 berikut ini:


Epoch	gpu_mem	box	obj	cls	labels	img.	size					
42/49	4.63G	0.02585	0.009489 (0.003852	12		640: 100%	69/69	[00:16	<00:00,	4.12it/s]	
	Class	Images	Labels	P		R	mAP@.5	mAP@.5	:.95: 1	00% 6/6	[00:02<00:00,	2.95it/s]
	all	176	174	0.98	0.9	193	0.981	0	.717			
Epoch	gpu_mem	box	obj	cls	labels	img.	_size					
43/49	4.63G	0.0242	0.009143	0.004793	6		640: 100%	69/69	[00:17	<00:00,	4.05it/s]	
	Class	Images	Labels	Р		R	mAP@.5	mAP@.5	:.95: 1	00% 6/6	[00:02<00:00,	2.99it/s]
	all	176	174	0.98	0.9	193	0.98	0	.725		. • C.	
Epoch	gpu mem	box	obj	cls	labels	img	size					
44/49	4.63G	0.02487	0.009315	0.004217	12		640: 100%	69/69	[00:16	<00:00,	4.14it/s]	
	Class	Images	Labels	P		R	mAP@.5	mAP@.5	:.95: 1	00% 6/6	[00:02<00:00,	2.27it/s]
	all	176					0.981				1. * (0.500.000.000.000.000.000.000.000.000.0	Flameter Stroff v
Epoch	gpu_mem	box	obj	cls	labels	img.	size					
45/49	4.63G	0.02449	0.00928	0.004282	13		640: 100%	69/69	[00:16	<00:00,	4.13it/s]	
	Class	Images	Labels	P		R	mAP@.5	mAP@.5	:.95: 1	00% 6/6	[00:01<00:00,	3.13it/s]
	all	176					0.979		.721			

Gambar 8. Proses training dataset(50 Epocs)

Berdasarkan gambar 8 yaitu menjalankan proses pelatihan sebanyak 50 epocs, dimana proses dari pelatihan ini bertujuan untuk meningkatkan akurasi sistem, agar tidak terjadi kesalahan dalam mendeteksi objek kematengan jengkol pada dataset.

3.1.6 Pengujian Sistem

Pada saat pengujian sistem, peneliti terlebih dahulu membuka anaconda 3 untuk memasukan perintah berupa python detect_jengkol3.py --weights best4.pt --img 640 --conf 0.6 --source 0. Setelah perintah tersebut dijalankan maka kamera akan diaktifkan agar mendeteksi kematengan jengkol bisa dijalankan secara realtime. Pada tahap pengujian pertama secara realtime peneliti menggunakan gambar jengkol muda untuk melihat seberapa persen nilai akurasi yang didapatkan oleh kelas jengkol muda. Disini peneliti mendapatkan nilai akurasi sebesar 64% karena faktor pencahayaan pada kamera kurang stapil dan penempatan posisi gambar kurang menengah. Jika nilai akurasi pada pendeteksi kelas jengkol meningkat maka carilah tempat dimana memiliki pencahayaan lebih oktimal dan posisi gambar tidak terlalu kesamping disaat pendeteksian. Tahap selanjutnya peneliti menggunakan gambar jengkol sedang untuk melihat seberapa persen nilai akurasi yang dimiliki oleh kelas jengkol sedang. Disini peneliti mendapatkan nilai akurasi sebesar 64% dimana memiliki kasus yang sama dengan kelas jengkol muda, karen faktor pencahayaan pada kamera kurang stapil dan penempatan posisi gambar kurang menengah. Cara mengatasinya dengan cara mencari tempat yang memiliki pencahayaan lebih oktimal dan mengarahkan gambar dengan posisi di tengah pada kamera. Hasil pengujian sistem ditunjukan pada gambar 9,10, dan 11 dibawah ini :

Gambar 9. Hasil pengujian jengkol muda

ISSN 2774-3639 (Media Online)

Vol 4, No 4, Juni 2024 | Hal 356-367 https://hostjournals.com/bulletincsr DOI: 10.47065/bulletincsr.v4i4.358

Pada gambar 9 menggambarkan hasil deteksi tingkat kematangan jengkol muda menggunakan model yang telah dilatih.

Gambar 10. Hasil Pengujian Jengkol Sedang

Pada gambar 10 menggambarkan hasil deteksi tingkat kematangan jengkol muda menggunakan model yang telah dilatih.

Gambar 11. Hasil Pengujian Jengkol Tua

Pada gambar 11 menggambarkan hasil deteksi tingkat kematangan jengkol muda menggunakan model yang telah dilatih.

3.1.7 Evaluasi

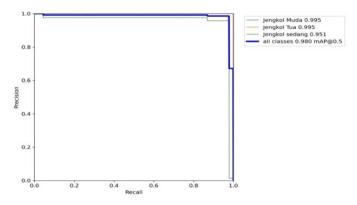
Setelah proses training dataset 50 epocs sudah dilakukan maka tahap berikutnya adalah evaluasi yang bertujuan untuk bisa melihat seberapa persen nilai dari precision, recall, Map, confusion matrix dan F1_curve. Dari evalauasi yang didapatkan dari hasil training dataset memiliki nilai precision 0.98, recal memiliki nilai 0.99 dan map memiliki nilai 0.98. selain itu evaluasi juga bisa melihat nilai hasil dari confusion matrix dimana kelas Jengkol Muda mendapatkan nilai true positive 1.00 dan kemudian untuk kelas Jengkol Sedang nilai true positive 1.00 dan pada kelas Jengkol Tua mendapatkan nilai true Positif 1.00. Berikut gambar hasil dari evaluasi dari training dataset baik penelitian dalam bentuk Precision, recall, map, F1 curve maupun confusion matrix:

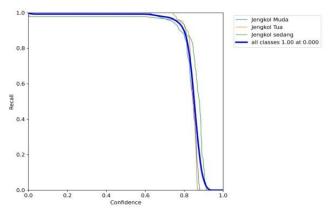
```
50 epochs completed in 0.274 hours.
Optimizer stripped from runs/train/yolov5s_results/weights/last.pt, 14.9MB
Optimizer stripped from runs/train/yolov5s results/weights/best.pt, 14.9MB
Validating runs/train/yolov5s results/weights/best.pt...
Fusing layers...
custom_YOLOv5s summary: 232 layers, 7251912 parameters, 0 gradients, 16.8 GFLOPs
                                                   Р
              Class
                        Images
                                   Labels
                                                              R
                                                                    mAP@.5 mAP@.5:.95: 100% 6/6 [00:05<00:00, 1.10it/s]
                                      174
                                                                                0.726
                 all
                           176
                                                0.98
                                                           0.993
                                                                      9.98
        Jengkol Muda
                                       42
                                                                     0.995
                                                                                0.726
                           176
                                               0.998
                                                              1
        Jengkol Tua
                                                                                 0.711
                           176
                                       86
                                               0.986
                                                              1
                                                                     0.995
      Jengkol sedang
                           176
                                       46
                                               0.956
                                                           0.978
                                                                     0.951
                                                                                  0.74
Results saved to runs/train/yolov5s_results
CPU times: user 11 s, sys: 1.26 s, total: 12.2 s
Wall time: 17min 8s
```


Gambar 12. Hasil training dataset.

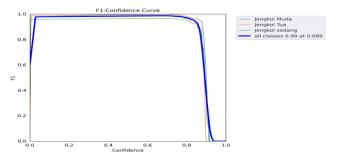
Gambar 12 menunjukkan hasil dari proses pelatihan dataset menggunakan YOLOv5 setelah 50 epoch. Evaluasi model menunjukkan bahwa semua kelas (Jengkol Muda, Sedang, dan Tua) mencapai nilai true positive sebesar 1.00, yang berarti bahwa model mampu mengidentifikasi semua gambar dengan benar tanpa kesalahan.

ISSN 2774-3639 (Media Online)


Vol 4, No 4, Juni 2024 | Hal 356-367 https://hostjournals.com/bulletincsr DOI: 10.47065/bulletincsr.v4i4.358


Gambar 13. Confusion Matrix

Gambar 13 Confusion Matrix ini digunakan untuk menilai kinerja model klasifikasi. Matriks ini memperlihatkan hasil prediksi model untuk setiap kelas. Pada penelitian ini, Confusion Matrix menunjukkan bahwa setiap kelas jengkol (Muda, Sedang, Tua) memiliki nilai true positive sebesar 1.00, yang menandakan akurasi prediksi yang sempurna untuk semua kelas


Gambar 14. Precision

Pada Gambar 14 menunjukkan metrik evaluasi yang menunjukkan berapa banyak dari prediksi yang dibuat oleh model yang benar-benar relevan. Precision tinggi menunjukkan bahwa model jarang membuat kesalahan ketika memprediksi kelas positif

Gambar 15. Recall

Pada Gambar 15 menunjukkan metrik yang menunjukkan seberapa baik model dalam menemukan semua contoh positif di dataset. Recall tinggi menunjukkan bahwa model mampu mengidentifikasi sebagian besar contoh positif yang sebenarnya ada di dataset

Gambar 16. F1_curve

ISSN 2774-3639 (Media Online)

Vol 4, No 4, Juni 2024 | Hal 356-367 https://hostjournals.com/bulletincsr DOI: 10.47065/bulletincsr.v4i4.358

Pada Gambar 15 F1 Score merupakan rata-rata harmonis dari precision dan recall. F1 curve menampilkan hubungan antara precision dan recall, membantu dalam menilai keseimbangan antara keduanya dalam model. F1 score yang tinggi menunjukkan bahwa model memiliki precision dan recall yang baik

3.2 Pembahasan

Permasalahan utama pada penelitian ini adalah mengidentifikasi tingkat kematangan jengkol dengan menggunakan metode algoritma deep learning. Dimana fungsi dari algoritma deep leaarning ini ialah Langkah pertama yang harus dilakukan peneliti ini adalah mengumpulkan dataset atau bahan data berupa gambar jengkol yang diperoleh langsung dari petani jengkol dan penjual jengkol di Pasar Ikan Simpang Periuk yang berjumlah 1356 dataset yang berhasil dikumpulkan. Setelah kumpulan data dikumpulkan. langkah selanjutnya adalah menandai dan mengubah ukuran foto. Proses pelatihan pada dataset kemudian dilakukan dengan menggunakan algoritma YOLOv5.

Implementasi algoritma ini dilakukan dalam bahasa pemrograman sebagai metode pembelajaran mesin (fase pelatihan) untuk mengambil keputusan atau prediksi. Proses pelatihan kumpulan data melibatkan berbagi data di situs web Roboflow, tempat kumpulan data telah diubah ukurannya dan diberi label. Data tersebut kemudian dibagi menjadi tiga jenis yaitu 81% untuk pelatihan, 13% untuk validasi, dan 6% untuk pengujian. Tujuan distribusi ini adalah untuk memfasilitasi proses pelatihan dan mengurangi risiko overfitting dan underfitting pada kumpulan data. Setelah selesai training data, langkah selanjutnya adalah evaluasi Dimana Sistem yang dikembangkan berdasarkan hasil penelitian berjalan sesuai dengan yang diharapkan. Sistem dapat mendeteksi jengkol dengan akurasi yang baik, hal ini dibuktikan dengan nilai mAP (mean average presisi) sebesar 0,98 yang dicapai pada penelitian ini.

4. KESIMPULAN

Setelah melakukan berbagai uji coba dan penelitian, penelitian ini dapat di simpulkan bahwa sistem pendeteksi kematengan jengkol dengan menggunakan metode algortima YOLOv5 dapat mencapai nilai akurasi pembacaan yang cukup baik yaitu mendapatkan nilai akurasi lebih dari 80% Ketika subjek berada secara tepat ditengah kamera dan mendapatkan pencahayaan yang memadai. Namun nilai akurasi tersebut dapat berubah jika dipengaruhi berbagai faktor seperti kurangnya pencahayaan pada kamera dan posisi letak subjek yang terlalu jauh dari kamera dan tidak tepat ditengah kamera. Selain itu, system ini dapat mengenali dengan tepat berbagai Tingkat kematengan jengkol, mulai dari tingkatan kematengan yang muda, sedang, dan tua. Penelitian ini menghasilkan data yang valid dengan Tingkat presisi yang dapat diandalkan. Berdasarkan hasil pengujian system pendeteksi kematengan jengkol memiliki nilai Map sebesar 98%, serta presisi dan recall masing-masing mencapai 98% dan 99,3%. System ini juga dapat mengindentifikasi atau mendeteksi tiga Tingkat kematengan jengkol dengan akurat. Untuk penelitian berikutnya, disarankan untuk memilih objek yang lebih mudah ditemukan dan lebih mengenal objek dalam penelitian pendeteksi objek menggunakan metode algoritma YOLOv5, saran selanjutnya ialah menggembangkan kelas pada dataset dengan menambahkan kelas dan jumlah dataset yang lebih besar untuk menghindari underfitting dalam pendeteksi kematengan jengkol, atau mengubah system menjadi lebih user-frendly dengan mengubahnya menjadi pengaplikasian agar hasil pengembangan menjadi lebih optimal

REFERENCES

- [1] Ismail, Muinuddin Mutmainna, and Dyah M, "Eksplorasi Makanan Khas Enrekang," Eksplor. Makanan Khas Tradis. Kabupaten Enrekang, vol. vol 5 no., no. E-ISSN 2716-4225, pp. 1–12, 2023.
- [2] R. Rusmaniah, H. Herman, P. D. Indriyani, R. M. Sari, and D. A. Nugroho, "Pelestarian Kuliner Lokal Jengkol Tahilala Sebagai Warisan Dan Perwujudan Nilai Budaya Banjar Di Desa Pingaran," Anterior J., vol. 21, no. 3, pp. 57–61, 2022, doi: 10.33084/anterior.v21i3.3502.
- [3] M. Thressia and M. Mulyadi, "Teknologi Pengolahan Buah Jengkol Dan Pemasaran Bagi Masyarakat Di Desa Sido Makmur Kecamatan Sipora Utara Kabupaten Kepulauan Mentawai," J. Hilirisasi IPTEKS, vol. 5, no. 3, pp. 157–171, 2022, doi: 10.25077/jhi.v5i3.608.
- [4] Direktoral Jenderal Hortikultura, Produksi Tanaman Sayuran Menurut Provinsi dan jenis tanaman 2021. 2020.
- [5] A. Kusuma, A. Rangga, S. Nurrohman, K. T. Anggoro, and R. Susun, "Implementasi Algoritma Yolo Dalam Pendeteksian Tingkat Kematangan Pada Buah Pepaya," vol. 1, no. 1, pp. 74–77, 2023.
- [6] S. Ilahiyah and A. Nilogiri, "Implementasi Deep Learning Pada Identifikasi Jenis Tumbuhan Berdasarkan Citra Daun Menggunakan Convolutional Neural Network _ Ilahiyah _ JUSTINDO (Jurnal Sistem dan Teknologi Informasi Indonesia)," JUSTINDO(Jurnal Sist. Teknol. Inf. Indones., vol. 3, no. 2, pp. 49–56, 2018.
- [7] S. Yuliany, Aradea, and Andi Nur Rachman, "Implementasi Deep Learning pada Sistem Klasifikasi Hama Tanaman Padi Menggunakan Metode Convolutional Neural Network (CNN)," J. Buana Inform., vol. 13, no. 1, pp. 54–65, 2022, doi: 10.24002/jbi.v13i1.5022.
- [8] H. A. Pratiwi, M. Cahyanti, and M. Lamsani, "Implementasi Deep Learning Flower Scanner Menggunakan Metode Convolutional Neural Network," Sebatik, vol. 25, no. 1, pp. 124–130, 2021, doi: 10.46984/sebatik.v25i1.1297.
- [9] J. PARDEDE and H. HARDIANSAH, "Deteksi Objek Kereta Api menggunakan Metode Faster R-CNN dengan Arsitektur VGG 16," MIND J., vol. 7, no. 1, pp. 21–36, 2022, doi: 10.26760/mindjournal.v7i1.21-36.
- [10] F. Rachmawati and D. Widhyaestoeti, "Deteksi Jumlah Kendaraan di Jalur SSA Kota Bogor Menggunakan Algoritma Deep Learning YOLO," Pros. LPPM UIKA Bogor, pp. 360–370, 2020.
- [11] V. Fransisca and H. Santoso, "Penerapan Gamma Correction Dalam Peningkatan Pendeteksian Objek Malam Pada Algoritma YOLOv5," Build. Informatics, Technol. Sci., vol. 5, no. 1, pp. 59–69, 2023, doi: 10.47065/bits.v5i1.3553.

ISSN 2774-3639 (Media Online)

Vol 4, No 4, Juni 2024 | Hal 356-367 https://hostjournals.com/bulletincsr DOI: 10.47065/bulletincsr.v4i4.358

- [12] R. Dwiyanto, D. W. Widodo, and P. Kasih, "Implementasi Metode You Only Look Once (YOLOv5) Untuk Klasifikasi Kendaraan Pada CCTV Kabupaten Tulungagung," Semin. Nas. Inov. Teknol., vol. 1, no. 1, pp. 102–104, 2022.
- [13] Y. A. S. Ahmad Fali Oklilas, Sukemi, Dinda Dwinta, Ghinadhia Shofi, Nanda Putri Mariza, Sri ArumKinanti, "Akurasi Pengujian Model Hasil Training menggunakan YOLOv4 untuk Pengenalan Kendaraan di Jalan Raya," ... J. Penelit. Ilmu ..., pp. 799–806, 2023, [Online]. Available: https://jurnal.polsri.ac.id/index.php/jupiter/article/view/6537%0Ahttps://jurnal.polsri.ac.id/index.php/jupiter/article/download/6 537/2528.
- [14] L. Qadrini, A. Sepperwali, and A. Aina, "Decision Tree Dan Adaboost Pada Klasifikasi Penerima Program Bantuan Sosial," J. Inov. Penelit., vol. 2, no. 7, pp. 1959–1966, 2021.
- [15] W. I. Rahayu, C. Prianto, and E. A. Novia, "Perbandingan Algoritma K-Means dan Naive Bayes untuk Memprediksi Prioritas Pembayaran Tagihan Rumah Sakit Berdasarkan Tingkat Kepentingan pada PT. Pertamina (Persero)," J. Tek. Inform., vol. 13, no. 2, pp. 1–8, 2021.
- [16] N. J. Hayati, D. Singasatia, and M. R. Muttaqin, "Object Tracking Menggunakan Algoritma You Only Look Once (YOLO)v8 untuk Menghitung Kendaraan," Komputa J. Ilm. Komput. dan Inform., vol. 12, no. 2, pp. 91–99, 2023, doi: 10.34010/komputa.v12i2.10654.
- [17] A. M. Ambarak and A. Z. Falani, "Pengembangan Aplikasi Bahasa Isyarat Indonesia Berbasis Realtime Video Menggunakan Model Machine Learning," JIKA (Jurnal Inform., vol. 7, no. 1, p. 89, 2023, doi: 10.31000/jika.v7i1.7277.
- [18] L. M. Muhammad Ferian Rizky Akbari, Bayu Rahayudi, "Implementasi Deep Learning menggunakan Algoritma EfficientDet untuk Sistem Deteksi Kelayakan Penerima Bantuan Langsung Tunai berdasarkan Citra Rumah di Wilayah Kabupaten Kediri," J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 7, no. 4, pp. 1817–1825, 2023, [Online]. Available: https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/12596.
- [19] L. Rahma, H. Syaputra, A. H. Mirza, and S. D. Purnamasari, "Objek Deteksi Makanan Khas Palembang Menggunakan Algoritma YOLO (You Only Look Once)," J. Nas. Ilmu Komput., vol. 2, no. 3, pp. 213–232, 2021, doi: 10.47747/jurnalnik.v2i3.534.
- [20] K. Khairunnas, E. M. Yuniarno, and A. Zaini, "Pembuatan Modul Deteksi Objek Manusia Menggunakan Metode YOLO untuk Mobile Robot," J. Tek. ITS, vol. 10, no. 1, 2021, doi: 10.12962/j23373539.v10i1.61622.