Penerapan Metode Recurrent Neural Network dengan Pendekatan Long Short-Term Memory (LSTM) Untuk Prediksi Harga Saham


Authors

  • Anggi Hanafiah Universitas Islam Riau, Pekanbaru, Indonesia
  • Yudhi Arta Universitas Islam Riau, Pekanbaru, Indonesia
  • Hafiza Oktasia Nasution Universitas Riau, Pekanbaru, Indonesia
  • Yuyun Dwi Lestari Universitas Harapan Medan, Medan, Indonesia

DOI:

https://doi.org/10.47065/bulletincsr.v4i1.321

Keywords:

RNN; LSTM; Price; Stock; ADAM

Abstract

Investing in shares is now increasingly popular and growing rapidly in Indonesia. By investing in shares, investors will get quite fast and large profits in a fairly short time. Investors need to analyze previous stock movements as a form of investment strategy to get maximum investment results. Many techniques have been applied to predict stock prices, one of which uses techniques in Deep Learning such as Recurrent Neural Network. In this research, research was conducted on stock price predictions using the Recurrent Neural Network method with the Long-Short Term Memory (LSTM) approach on BBNI stock data. The research only uses close data or data about daily closing stock prices. In designing LSTM there are several things that are configured such as dropout size, density, activation function, and number of neurons used, and in the training process one of the optimizers provided by the Keras framework is used, namely the ADAM (Adaptive Moment Estimation) optimizer. The test scenario is carried out using a number of epochs of 10 and 20 with a batch size of 32. The test results will produce MAE and MAPE values, where the lower the MAE and MAPE values, the better the model's performance in making accurate predictions. The test results using epoch 10 got an MAE value of 0.0286 and a MAPE value of 0.0488, while the test results using epoch 20 got an MAE value of 0.0150 and a MAPE value of 0.0257.

Downloads

Download data is not yet available.

References

A. S. B. Karno, “Prediksi Data Time Series Saham Bank BRI Dengan Mesin Belajar LSTM (Long ShortTerm Memory),” J. Inform. Inf. Secur., vol. 1, no. 1, 2020.

N. Alviyanil’Izzah et al., “ANALISIS TEKNIKAL PERGERAKAN HARGA SAHAM DENGAN MENGGUNAKAN INDIKATOR STOCHASTIC OSCILLATOR DAN WEIGHTED MOVING AVERAGE,” KEUNIS, vol. 9, no. 1, pp. 36–53, 2021.

D. I. Puteri, “Implementasi Long Short Term Memory (LSTM) dan Bidirectional Long Short Term Memory (BiLSTM) Dalam Prediksi Harga Saham Syariah,” Euler J. Ilm. Mat. Sains dan Teknol., vol. 11, no. 1, pp. 35–43, 2023.

D. Setiawan, K. Stefani, Y. J. Shandy, and C. A. F. Patra, “Sistem Analisa Harga Saham Menggunakan Algoritma Long Short Term Memory (LSTM),” Media Inform., vol. 21, no. 3, pp. 264–279, 2022.

P. A. Riyantoko, T. M. Fahruddin, K. M. Hindrayani, and E. M. Safitri, “Analisis Prediksi Harga Saham Sektor Perbankan Menggunakan Algoritma Long-Short Terms Memory (Lstm),” in Seminar Nasional Informatika (SEMNASIF), 2020, pp. 427–435.

S. Supiyandi, E. Hariyanto, C. Rizal, M. Zen, and S. H. R. Pasaribu, “Sistem Pendukung Keputusan Menentukan Kualitas Ayam Petelur Menggunakan Metode Simple Additive Weighting,” Build. Informatics, Technol. Sci., vol. 4, no. 1, pp. 256–262, 2022.

A. Hanafiah and R. Wandri, “Implementasi Load Balancing Dengan Algoritma Penjadwalan Weighted Round Robin Dalam Mengatasi Beban Webserver,” IT J. Res. Dev., vol. 5, no. 2, pp. 226–233, 2021.

A. Hanafiah, H. O. Nasution, H. Noviasari, R. Wandri, and J. Mardafora, “Pelatihan Penggunaan Aplikasi Mendeley untuk Penulisan Karya Ilmiah Bagi Mahasiswa Fakultas Ekonomi dan Bisnis Universitas Riau,” J. Pengabdi. Masy. dan Penerapan Ilmu Pengetah., vol. 3, no. 2, pp. 14–17, 2022.

J. Cao, Z. Li, and J. Li, “Financial time series forecasting model based on CEEMDAN and LSTM,” Phys. A Stat. Mech. its Appl., vol. 519, pp. 127–139, 2019.

R. S. Pontoh et al., “Jakarta pandemic to endemic transition: forecasting COVID-19 using NNAR and LSTM,” Appl. Sci., vol. 12, no. 12, p. 5771, 2022.

A. Arfan, “Prediksi harga saham di Indonesia menggunakan algoritma long short-term memory,” Pros. SeNTIK, vol. 3, no. 1, 2019.

R. I. Borman, A. T. Priandika, and A. R. Edison, “Implementasi Metode Pengembangan Sistem Extreme Programming (XP) pada Aplikasi Investasi Peternakan,” JUSTIN (Jurnal Sist. Dan Teknol. Informasi), vol. 8, no. 3, pp. 272–277, 2020.

H. O. Nasution, H. Noviasari, S. Nasution, and L. Melinda, “Twitter Sentiment Analysis and Its Effect on Society on the Fall of Cryptocurrency,” IT J. Res. Dev., vol. 7, no. 1, pp. 147–151, 2022.

A. Nilsen, “Perbandingan Model RNN, Model LSTM, dan Model GRU dalam Memprediksi Harga Saham-Saham LQ45,” J. Stat. dan Apl., vol. 6, no. 1, pp. 137–147, 2022.

M. Yang and J. Wang, “Adaptability of financial time series prediction based on BiLSTM,” Procedia Comput. Sci., vol. 199, pp. 18–25, 2022.

B. Arief, H. Kholifatullah, and A. Prihanto, “Penerapan Metode Long Short Term Memory Untuk Klasifikasi Pada Hate Speech,” J. Informatics Comput. Sci., vol. 4, 2023.

A. Nurdin, B. A. S. Aji, A. Bustamin, and Z. Abidin, “Perbandingan Kinerja Word Embedding Word2Vec, Glove, Dan Fasttext Pada Klasifikasi Teks,” J. Tekno Kompak, vol. 14, no. 2, pp. 74–79, 2020.

I. K. A. Enriko, F. N. Gustiyana, and R. H. Putra, “Komparasi Hasil Optimasi Pada Prediksi Harga Saham PT. Telkom Indonesia Menggunakan Algoritma Long Short Term Memory,” J. MEDIA Inform. BUDIDARMA, vol. 7, no. 2, pp. 659–667, 2023.

K. Azmi, S. Defit, and S. Sumijan, “Implementasi convolutional neural network (CNN) untuk klasifikasi batik tanah liat sumatera barat,” J. Unitek, vol. 16, no. 1, pp. 28–40, 2023.

A. A. Suryanto and A. Muqtadir, “Penerapan metode mean absolute error (MEA) dalam algoritma regresi linear untuk prediksi produksi padi,” Saintekbu, vol. 11, no. 1, pp. 78–83, 2019.

M. A. Maricar, “Analisa perbandingan nilai akurasi moving average dan exponential smoothing untuk sistem peramalan pendapatan pada perusahaan xyz,” J. Sist. dan Inform., vol. 13, no. 2, pp. 36–45, 2019.

S. Inayati, Y. Yuliana, and A. Hanafiah, “Prediksi Jumlah Peserta BPJS Penerima Bantuan Iuran (PBI) APBN menggunakan Metode Fuzzy Time Series Cheng,” Barekeng J. Ilmu Mat. dan Terap., vol. 15, no. 2, pp. 373–384, 2021.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Penerapan Metode Recurrent Neural Network dengan Pendekatan Long Short-Term Memory (LSTM) Untuk Prediksi Harga Saham

ARTICLE HISTORY

Submitted: 2023-12-20
Published: 2023-12-31

Abstract View: 147 times
PDF Download: 147 times

How to Cite

Hanafiah, A., Arta, Y., Nasution, H. O., & Lestari, Y. D. (2023). Penerapan Metode Recurrent Neural Network dengan Pendekatan Long Short-Term Memory (LSTM) Untuk Prediksi Harga Saham. Bulletin of Computer Science Research, 4(1), 27-33. https://doi.org/10.47065/bulletincsr.v4i1.321

Issue

Section

Articles