Prediksi Tingkat Produksi Bawang Goreng menggunakan Metode K-Means dan Fuzzy Inference System
DOI:
https://doi.org/10.47065/bulletincsr.v4i1.297Keywords:
Fried Onions; Clustering; Fuzzy Sugeno; K-Means; Forecasting; PredictionAbstract
Shallots are a strategic commodity because they are needed for household consumption as well as the food industry. Shallots are usually used as a cooking spice, or as a topping for food dishes called fried onions. Shallots are easily damaged, one way to prevent damage is to process shallots into fried onions. Sales of fried onions fluctuate every month due to consumer demand, therefore in this research a grouping of production levels and predictions of fried onion production was carried out. The methods used in this research are K-Means and Fuzzy Sugeno. From the results of research using the K-Means method, there are 3 clusters of fried onion production levels, namely high, medium and small production levels. High production levels were found in months 4, 5, 9, and 10; moderate production levels in months 1, 2, 3, 6, 7, 8 and 11; while a small production level was found in the 12th month. Based on system testing using the fuzzy Sugeno method, data was generated that could be processed and produce 9 rules to serve as a reference in predicting fried onion production for the following years. Apart from that, based on the results of the Mean Absolute Percent Error calculation, the capability of the model created is good and accurate because it has a value of 14.2%. Fried onion production levels in the 4th and 12th months have more accurate predictions compared to other months
Downloads
References
P. Wisudawaty, I. Yuliasih, and L. Haditjaroko, “Aplikasi edible coating minyak kayu manis pada manisan tomat cherry selama penyimpanan,” J. Teknol. Ind. Pertan., vol. 30, no. 1, pp. 63–71, 2020.
A. Adrian, A. Lamusa, and S. Sulaeman, “Persediaan bahan baku bawang putih goreng pada UKM Hj Mbok Sri di kota Palu,” Agrotekbis E-Jurnal Ilmu Pertan., vol. 8, no. 3, pp. 528–533, 2020.
Fachruddin, M. R. Pahlevi, M. Ismail, E. Rasywir, and Y. Pratama, “Analisis Usability Pada Implementasi Sistem Pengelolaan Keuangan Masjid Menggunakan USE Questionnaire,” J. Media Inform. Budidarma, vol. 4, pp. 1216–1224, 2020, doi: 10.30865/mib.v4i4.2518.
V. Abdurrohman and S. Nita, “Rancang Bangun Sistem Informasi Penjualan Smartphone Berbasis Web,” Semin. Nas. Teknol. Inf. dan Komun., pp. 43–48, 2020.
D. W. Sitohang and A. Rikki, “Implementasi Algoritma K- Means Clustering untuk Mengelompokkan Data Gizi Balita pada Kecamatan Garoga Tapanuli Utara,” KAKIFIKOM (Kumpulan Artik. Karya Ilm. Fak. Ilmu Komputer), vol. 02, pp. 80–92, 2019, doi: 10.54367/kakifikom.v1i2.642.
M. Seyedan and F. Mafakheri, “Predictive big data analytics for supply chain demand forecasting: methods, applications, and research opportunities,” J. Big Data, vol. 7, no. 1, 2020, doi: 10.1186/s40537-020-00329-2.
L. Buch and A. Andrzejak, “Learning-Based Recursive Aggregation of Abstract Syntax Trees for Code Clone Detection,” SANER 2019 - Proc. 2019 IEEE 26th Int. Conf. Softw. Anal. Evol. Reengineering, pp. 95–104, 2019, doi: 10.1109/SANER.2019.8668039.
G. Neelakantam, D. D. Onthoni, and P. K. Sahoo, “Fog computing enabled locality based product demand prediction and decision making using reinforcement learning,” Electron., vol. 10, no. 3, pp. 1–16, 2021, doi: 10.3390/electronics10030227.
V. N. Sari, L. Y. Astri, and E. Rasywir, “Analisis Dan Penerapan Algoritma Naive Bayes Untuk Evaluasi,” J. Ilm. Mhs. Tek. Inform., vol. 2, no. 1, pp. 53–68, 2020.
T. M. Tamtelahitu, “Komparasi Algoritma Clustering dengan Dataset Penyebaran Covid-19 di Indonesia Periode Maret-Mei 2020,” J. Teknol. Technoscientia, vol. 13, no. 1, pp. 27–34, 2020.
L. Maulida, “Penerapan data mining dalam mengelompokan kunjungan wisatawan ke objek wisata unggulan di Prov. DKI Jakarta dengan K-Means,” JISKa, vol. 2, no. 3, pp. 167–174, 2018.
S. Utara, “Implementasi data mining untuk memprediksi pola pembelian sepeda motor pada Showroom CV. Viva Mas Motors dengan metode algoritma C4,” vol. 2, no. 2, pp. 34–38, 2018.
R. D. Laksmana, E. Santoso, and B. Rahayudi, “Prediksi penjualan roti menggunakan metode exponential smoothing (Studi Kasus: Harum Bakery),” Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 3, no. 5, pp. 4933–4941, 2019.
M. Zhang, H. Xu, N. Ma, and X. Pan, “Intelligent vehicle sales prediction based on online public opinion and online search index,” Sustainability, vol. 14, p. 10344, 2022.
R. Rizky, T. Hidayat, A. Hardianto, and Z. Hakim, “Penerapa metode fuzzy sugeno untuk pengukuran keakuratan jarak pada pintu otomatis di CV Bejo Perkasa,” J. Tek. Inform. Unika St. Thomas, vol. 5, no. 1, 2020.
Odi, “Penerapan sistem pakar menggunakan Metode Fuzzy Sugeno identifikasi hama tanaman padi,” J. Tek. Inform. Dan Sist. Inf., vol. 5, no. 1, pp. 45–59, 2018.
Gustientiedina, M. H. Adiya, and Y. Desnelita, “Jurnal Nasional Teknologi dan Sistem Informasi Penerapan Algoritma K-Means Untuk Clustering Data Obat-Obatan Pada RSUD Pekanbaru,” J. Nas. Teknol. dan Sist. Inf., vol. 5, no. 1, pp. 17–24, 2019.
D. YD and A. Setiawan, “Penerapan metode clustering K-Means dalam pengelompokan penjualan produk,” J. Media Infotama, vol. 12, no. 2, pp. 148–157, 2017, doi: 10.37676/jmi.v12i2.418.
M. Y. Rizki, S. Maysaroh, and A. P. Windarto, “Implementasi K-Means Clustering dalam mengelompokkan minat membaca penduduk menurut wilayah,” JUST IT J. Sist., vol. 11, no. 2, pp. 41–49, 2021.
D. F. Pasaribu, I. S. Damanik, E. Irawan, Suhada, and H. S. Tambunan, “Memanfaatkan algoritma K-Means dalam memetakan potensi hasil produksi kelapa sawit PTPN IV Marihat,” BIOS J. Teknol. Inf. dan Rekayasa Komput., vol. 2, no. 1, pp. 11–20, 2021, doi: 10.37148/bios.v2i1.17.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Prediksi Tingkat Produksi Bawang Goreng menggunakan Metode K-Means dan Fuzzy Inference System
ARTICLE HISTORY
How to Cite
Issue
Section
Copyright (c) 2023 Priska Wisudawaty

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).